ImagePrep is a tool for preparing image labels in different formats, primarily for object detection tasks.
Deep Learning frameworks expect datasets to be prepared in a structure, style or format that fits into their workflow. With ImagePrep, you can easily organize labels according to these requirements. Currently, the tool simplifies the process of preparing labels with COCO, Pascal VOC and YOLO label formats. Conversion to one from another is also supported.
A stable version:
pip install imageprep
The latest:
# clone repo
git clone https://github.com/adbeda/imageprep
# install
cd imageprep && pip install -e .
# or simply with:
python -m pip install 'git+https://github.com/adbeda/imageprep.git'
Example 1: Organize images and labels in COCO style
from imageprep import coco
"""
Folder Structure of a sample dataset
data
├── images
│ ├── 145_28.jpg
│ ├── 79_38.jpg
│ ├── 79_45.jpg
│ └── 80_7.jpg
└── labels
├── 145_28.txt
├── 79_38.txt
├── 79_45.txt
└── 80_7.txt
"""
# folder containing images
image_path = "data/images/"
label_path = "data/labels/"
# run task
coco_dict = coco.coco_format_folder(image_path, label_path)
print(coco_dict)
Output:
[ {
"image":[{
"file_name":"data/images/145_28.jpg",
"height":416,
"width":416
}],
"annotations":[{
"bbox":[336, 398, 416, 416],
"id":1,
"segmentation":[],
"area":1440,
"category_id":0
},
{
"bbox":[3, 91, 105, 163],
"id":2,
"segmentation":[],
"area":7344,
"category_id":0
},
{
"bbox":[134, 31, 196, 95],
"id":3,
"segmentation":[],
"area":3968,
"category_id":0
}
],
"image_id":0
},
{
"image":[{
"file_name":"data/images/79_38.jpg",
"height":416,
"width":416
}],
"annotations":[{
"bbox":[257, 306, 325, 370],
"id":1,
"segmentation":[],
"area":4352,
"category_id":0
}],
"image_id":1}
]
Example 2: Convert absolute bounding box values to YOLO style formats
XminYminXmaxYmax -----> XcenterYcenter Width Height
from imageprep import yolo
"""
# Input BBOX in absolute format (Xmin, Ymin, Xmax, Ymax)
├── labels
├── 145_28.txt
│ ├── 336 398 416 416
│ ├── 3 91 105 163
│ ├── 134 31 196 95
├── 79_38.txt
│ ├── 257 306 325 370
├── 79_45.txt
│ ├── 0 399 133 416
│ ├── 161 255 239 343
│ ├── 336 32 416 108
└── 80_7.txt
├── 267 223 391 319
"""
# folder containing images
image_path = "data/images/"
label_path = "data/labels/"
output_path = "data/yolo_labels/"
# run task and save text
yolo.convert_to_yolo(image_path, label_path, output_path)
Output:
# Output BBOX in relative format (Xcenter, Ycenter, Width, Height)
├── yolo_labels
├── 145_28.txt
│ ├── 0.9038461538461539 0.9783653846153847 0.19230769230769232 0.04326923076923077
│ ├── 0.12980769230769232 0.30528846153846156 0.2451923076923077 0.17307692307692307
│ ├── 0.3966346153846154 0.1514423076923077 0.14903846153846154 0.15384615384615385
├── 79_38.txt
│ ├── 0.6995192307692308 0.8125 0.16346153846153846 0.15384615384615385
├── 79_45.txt
│ ├── 0.15985576923076925 0.9795673076923077 0.3197115384615385 0.040865384615384616
│ ├── 0.4807692307692308 0.71875 0.1875 0.21153846153846156
│ ├── 0.9038461538461539 0.16826923076923078 0.19230769230769232 0.1826923076923077
└── 80_7.txt
├── 0.7908653846153847 0.6514423076923077 0.2980769230769231 0.23076923076923078
Usage: imageprep [OPTIONS] COMMAND [ARGS]...
Dataset Preparation Helper
Options:
-h, --help Show this message and exit.
Commands:
convert-to-yolo Converts absolute bbox values to relative ones
create-path-file Writes out the path to images in a folder as a list
get-image-name Prints out the names of images in a folder
resize-images Resizes Image dimension to a size provided by user
The CLI is still in early stage of development.
The above output can easily be integrated with data registration steps requried to train a Mask-RCNN model using Detectron2. Check out the example here.
- Create a list of all bounding boxes
- Stack and save images as numpy array
- Dump labels as JSON objects to a file
- Resize images within a single or multiple folders
- Convert relative (YOLO style) values to absolute ones
- Customize a python dictionary of labels to a Detectron2 format and more ...
- Improve the CLI
- Add workflow for VOC style
- Test against RCNN families
- Create a documentation
- Improve integration for Detectron2 and YOLO