Skip to content

Commit

Permalink
[Fix] Fix fpg link (open-mmlab#7478)
Browse files Browse the repository at this point in the history
  • Loading branch information
BIGWangYuDong authored and ZwwWayne committed Jul 19, 2022
1 parent 0caba26 commit 26aaaeb
Show file tree
Hide file tree
Showing 2 changed files with 19 additions and 17 deletions.
14 changes: 8 additions & 6 deletions configs/fpg/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,12 +19,14 @@ All backbones are Resnet-50 in pytorch style.

| Method | Neck | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
|:------------:|:-----------:|:-------:|:--------:|:--------------:|:------:|:-------:|:-------:|:--------:|
| Faster R-CNN | FPG | 50e | 20.0 | - | 42.2 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/faster_rcnn_r50_fpg_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg_crop640_50e_coco/faster_rcnn_r50_fpg_crop640_50e_coco-76220505.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg_crop640_50e_coco/20210218_223520.log.json) |
| Faster R-CNN | FPG-chn128 | 50e | 11.9 | - | 41.2 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco/faster_rcnn_r50_fpg-chn128_crop640_50e_coco-24257de9.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco/20210218_221412.log.json) |
| Mask R-CNN | FPG | 50e | 23.2 | - | 42.7 | 37.8 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/mask_rcnn_r50_fpg_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg_crop640_50e_coco/mask_rcnn_r50_fpg_crop640_50e_coco-c5860453.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg_crop640_50e_coco/20210222_205447.log.json) |
| Mask R-CNN | FPG-chn128 | 50e | 15.3 | - | 41.7 | 36.9 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco/mask_rcnn_r50_fpg-chn128_crop640_50e_coco-5c6ea10d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco/20210223_025039.log.json) |
| RetinaNet | FPG | 50e | 20.8 | - | 40.5 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/retinanet_r50_fpg_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg_crop640_50e_coco/retinanet_r50_fpg_crop640_50e_coco-46fdd1c6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg_crop640_50e_coco/20210225_143957.log.json) |
| RetinaNet | FPG-chn128 | 50e | 19.9 | - | 40.3 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco/retinanet_r50_fpg-chn128_crop640_50e_coco-5cf33c76.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco/20210225_184328.log.json) |
| Faster R-CNN | FPG | 50e | 20.0 | - | 42.3 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/faster_rcnn_r50_fpg_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg_crop640_50e_coco/faster_rcnn_r50_fpg_crop640_50e_coco_20220311_011856-74109f42.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg_crop640_50e_coco/faster_rcnn_r50_fpg_crop640_50e_coco_20220311_011856.log.json) |
| Faster R-CNN | FPG-chn128 | 50e | 11.9 | - | 41.2 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco/faster_rcnn_r50_fpg-chn128_crop640_50e_coco_20220311_011857-9376aa9d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco/faster_rcnn_r50_fpg-chn128_crop640_50e_coco_20220311_011857.log.json) |
| Faster R-CNN | FPN | 50e | 20.0 | - | 38.9 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/faster_rcnn_r50_fpn_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpn_crop640_50e_coco/faster_rcnn_r50_fpn_crop640_50e_coco_20220311_011857-be7c9f42.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpn_crop640_50e_coco/faster_rcnn_r50_fpn_crop640_50e_coco_20220311_011857.log.json) |
| Mask R-CNN | FPG | 50e | 23.2 | - | 43.0 | 38.1 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/mask_rcnn_r50_fpg_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg_crop640_50e_coco/mask_rcnn_r50_fpg_crop640_50e_coco_20220311_011857-233b8334.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg_crop640_50e_coco/mask_rcnn_r50_fpg_crop640_50e_coco_20220311_011857.log.json) |
| Mask R-CNN | FPG-chn128 | 50e | 15.3 | - | 41.7 | 37.1 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco/mask_rcnn_r50_fpg-chn128_crop640_50e_coco_20220311_011859-043c9b4e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco/mask_rcnn_r50_fpg-chn128_crop640_50e_coco_20220311_011859.log.json) |
| Mask R-CNN | FPN | 50e | 23.2 | - | 49.6 | 35.6 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/mask_rcnn_r50_fpn_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpn_crop640_50e_coco/mask_rcnn_r50_fpn_crop640_50e_coco_20220311_011855-a756664a.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpn_crop640_50e_coco/mask_rcnn_r50_fpn_crop640_50e_coco_20220311_011855.log.json) |
| RetinaNet | FPG | 50e | 20.8 | - | 40.5 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/retinanet_r50_fpg_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg_crop640_50e_coco/retinanet_r50_fpg_crop640_50e_coco_20220311_110809-b0bcf5f4.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg_crop640_50e_coco/retinanet_r50_fpg_crop640_50e_coco_20220311_110809.log.json) |
| RetinaNet | FPG-chn128 | 50e | 19.9 | - | 39.9 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco/retinanet_r50_fpg-chn128_crop640_50e_coco_20220313_104829-ee99a686.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco/retinanet_r50_fpg-chn128_crop640_50e_coco_20220313_104829.log.json) |

**Note**: Chn128 means to decrease the number of channels of features and convs from 256 (default) to 128 in
Neck and BBox Head, which can greatly decrease memory consumption without sacrificing much precision.
Expand Down
22 changes: 11 additions & 11 deletions configs/fpg/metafile.yml
Original file line number Diff line number Diff line change
Expand Up @@ -27,8 +27,8 @@ Models:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg_crop640_50e_coco/faster_rcnn_r50_fpg_crop640_50e_coco-76220505.pth
box AP: 42.3
Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg_crop640_50e_coco/faster_rcnn_r50_fpg_crop640_50e_coco_20220311_011856-74109f42.pth

- Name: faster_rcnn_r50_fpg-chn128_crop640_50e_coco
In Collection: Feature Pyramid Grids
Expand All @@ -41,7 +41,7 @@ Models:
Dataset: COCO
Metrics:
box AP: 41.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco/faster_rcnn_r50_fpg-chn128_crop640_50e_coco-24257de9.pth
Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco/faster_rcnn_r50_fpg-chn128_crop640_50e_coco_20220311_011857-9376aa9d.pth

- Name: mask_rcnn_r50_fpg_crop640_50e_coco
In Collection: Feature Pyramid Grids
Expand All @@ -53,12 +53,12 @@ Models:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.7
box AP: 43.0
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.8
Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg_crop640_50e_coco/mask_rcnn_r50_fpg_crop640_50e_coco-c5860453.pth
mask AP: 38.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg_crop640_50e_coco/mask_rcnn_r50_fpg_crop640_50e_coco_20220311_011857-233b8334.pth

- Name: mask_rcnn_r50_fpg-chn128_crop640_50e_coco
In Collection: Feature Pyramid Grids
Expand All @@ -74,8 +74,8 @@ Models:
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 36.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco/mask_rcnn_r50_fpg-chn128_crop640_50e_coco-5c6ea10d.pth
mask AP: 37.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco/mask_rcnn_r50_fpg-chn128_crop640_50e_coco_20220311_011859-043c9b4e.pth

- Name: retinanet_r50_fpg_crop640_50e_coco
In Collection: Feature Pyramid Grids
Expand All @@ -88,7 +88,7 @@ Models:
Dataset: COCO
Metrics:
box AP: 40.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg_crop640_50e_coco/retinanet_r50_fpg_crop640_50e_coco-46fdd1c6.pth
Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg_crop640_50e_coco/retinanet_r50_fpg_crop640_50e_coco_20220311_110809-b0bcf5f4.pth

- Name: retinanet_r50_fpg-chn128_crop640_50e_coco
In Collection: Feature Pyramid Grids
Expand All @@ -100,5 +100,5 @@ Models:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.3
Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco/retinanet_r50_fpg-chn128_crop640_50e_coco-5cf33c76.pth
box AP: 39.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco/retinanet_r50_fpg-chn128_crop640_50e_coco_20220313_104829-ee99a686.pth

0 comments on commit 26aaaeb

Please sign in to comment.