Transitional Learning: Exploring the Transition States of Degradation for Blind Super-resolution (TLSR)
This repository is for TLSR introduced in the following paper
Yuanfei Huang, Jie Li, Yanting Hu, Xinbo Gao and Hua Huang*, "Transitional Learning: Exploring the Transition States of Degradation for Blind Super-resolution", IEEE TPAMI, 2023, 45(5): 6495-6510. paper
- python 3.7
- pytorch >= 1.5
- NVIDIA GPU + CUDA
Download the pre-trained models from Google Drive or 百度网盘 (提取码: ohwt)
Download DIV2K and Flickr2K datasets into the path "data/Datasets/Train/DF2K".
For convolutive degradations (isotropic Gaussian):
-
'-scale' == 2
-
'-degrad_train' == {'type': 'B', 'min_sigma': 0.2, 'max_sigma': 2.0} # for Training.
-
'-degrad_test' == [{'type': 'B', 'sigma': 1.0}] # for Testing.
OR
-
'-scale' == 4
-
'-degrad_train' == {'type': 'B', 'min_sigma': 0.2, 'max_sigma': 4.0} # for Training.
-
'-degrad_test' == [{'type': 'B', 'sigma': 2.0}] # for Testing.
For convolutive degradations (anisotropic Gaussian):
- '-scale' == 4
- '-degrad_train' == {'type': 'B_aniso', 'min_sigma': 0, 'max_sigma': 0.5}
- '-degrad_test' == [{'type': 'B_aniso', 'sigma': 0.25}] # for evaluation.
For additive degradations:
- '-scale' == 1 OR 2 OR 4
- '-degrad_train' == {'type': 'N', 'min_sigma': 0, 'max_sigma': 30}
- '-degrad_test' == [{'type': 'N', 'sigma': 15}] # for evaluation.
For other degradations:
- '-scale' == 1
- '-degrad_train' == {'type': 'JPEG', 'min_sigma': 10, 'max_sigma': 30}
- '-degrad_test' == [{'type': 'JPEG', 'sigma': 20}] # for evaluation.
python main.py --train 'Train'
python main.py --train 'Test'
@ARTICLE{TLSR2022TPAMI,
author={Huang, Yuanfei and Li, Jie and Hu, Yanting and Gao, Xinbo and Huang, Hua},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Transitional Learning: Exploring the Transition States of Degradation for Blind Super-Resolution},
year={2023},
volume={45},
number={5},
pages={6495-6510},
doi={10.1109/TPAMI.2022.3206870}}