Skip to content

YuanfeiHuang/CoMoNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Convolution Modulation for Image Super-resolution (TCSVT 2023)

This repository is for CoMoNet introduced in the following paper

Yuanfei Huang, Jie Li, Yanting Hu, Hua Huang and Xinbo Gao, "Deep Convolution Modulation for Image Super-resolution", IEEE Transactions on Circuits and Systems for Video Technology, vol. 34, no. 5, pp. 3647-3662, 2024. paper

Overflow

Pipeline of CoMo

Framework of CoMoNet

Dependenices

  • python 3.8
  • pytorch >= 1.7.0
  • NVIDIA GPU + CUDA

Data preparing

Download DIV2K datasets into the path "../../Datasets/Train/DIV2K".

Train

  1. Replace the train dataset path '../../Datasets/Train/' and validation dataset '../../Datasets/Test/' with your training and validation datasets, respectively.

  2. Set the configurations in 'option.py' as you want.

python main.py --train 'Train'

Test

  1. Download models from 'models/'.

  2. Replace the test dataset path '../../Datasets/Test/' with your datasets.

python main.py --train 'Test'

Results

Visual Results Visual Results

Citation

@ARTICLE{10256095,
  author={Huang, Yuanfei and Li, Jie and Hu, Yanting and Huang, Hua and Gao, Xinbo},
  journal={IEEE Transactions on Circuits and Systems for Video Technology}, 
  title={Deep Convolution Modulation for Image Super-Resolution}, 
  year={2024},
  volume={34},
  number={5},
  pages={3647-3662}

About

codes for CoMoNet (TCSVT2023)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages