Skip to content
/ DFFNet Public

Information Sciences 2021-DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

License

Notifications You must be signed in to change notification settings

WxTu/DFFNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DFFNet

CIFReNet Show

DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation.

Xiangyan Tang, Wenxuan Tu, Keqiu Li, Jieren Cheng.

Information Sciences, 565: 326-343, 2021.

All rights reserved. Licensed under the Apache License 2.0

The code is released for academic research use only. For commercial use, please contact [wenxuantu@163.com].

Installation

Clone this repo.

https://github.com/WxTu/DFFNet.git
  • Windows or Linux
  • Python3
  • Pytorch(0.3+)
  • Numpy
  • Torchvision
  • Matplotlib

Preparation

We use Cityscapes, Camvid and Helen datasets. To train a model on these datasets, download datasets from official websites.

Our backbone network is pre-trained on the ImageNet dataset provided by F. Li et al. You can download publically available pre-trained MobileNet v2 from this website.

Code Structure

  • data/Dataset.py: processes the dataset before passing to the network.
  • model/DFFNet.py: defines the architecture of the whole model.
  • model/Backbone.py: defines the encoder.
  • model/Layers.py: defines the MFFM, LSPM, and others.
  • utils/Config.py: defines some hyper-parameters.
  • utils/Process.py: defines the process of data pretreatment.
  • utils/Utils.py: defines the loss, optimization, metrics, and others.
  • utils/Visualization.py: defines the data visualization.
  • Train.py: the entry point for training and validation.
  • Test.py: the entry point for testing.

Visualization

Visual Show

Contact

wenxuantu@163.com

Any discussions or concerns are welcomed!

Citation

If you use this code for your research, please cite our papers.

@article{Tang2021DFFNet,
  title={DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation},
  author={Xiangyan Tang and Wenxuan Tu and Keqiu Li and Jieren Cheng},
  journal={Information Sciences},
  volume={565},
  pages={326-343},
  year={2021}
}

Acknowledgement

https://github.com/ansleliu/LightNet

https://github.com/meetshah1995/pytorch-semseg

https://github.com/zijundeng/pytorch-semantic-segmentation

https://github.com/Tramac/awesome-semantic-segmentation-pytorch

About

Information Sciences 2021-DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages