Skip to content

The PyTorch code of the AAAI2021 paper "Non-Autoregressive Coarse-to-Fine Video Captioning".

Notifications You must be signed in to change notification settings

Uason-Chen/Non-Autoregressive-Video-Captioning

 
 

Repository files navigation

Non-Autoregressive Coarse-to-Fine Video Captioning

PyTorch Implementation of the paper:

Non-Autoregressive Coarse-to-Fine Video Captioning (AAAI2021)

Bang Yang, Yuexian Zou*, Fenglin Liu and Can Zhang.

[arXiv] or [aaai.org]

Updates

[30 Aug 2021] Update the out-of-date links.

[16 Jun 2021] Add detailed instuctions for extracting 3D features of videos.

[12 Mar 2021] We have released the codebase, preprocessed data and pre-trained models.

Main Contribution

  1. The first non-autoregressive decoding based method for video captioning.
  2. A generation task of specific part of speech to alleviate the insufficient training of meanining words.
  3. Visual word-driven flexiable decoding algorithms for caption generation.

Content

Environment

we recommend you to use Anaconda to create a new environment:

conda create -n cap python==3.7
conda activate cap
pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
pip install tqdm psutil h5py PyYaml wget
pip install tensorboard==2.2.2 tensorboardX==2.1

Here we use torch 1.6.0 based on CUDA 10.1. Another version of torch may also work.

Basic Information

  1. supported datasets
  • Youtube2Text (i.e., MSVD in the paper)
  • MSRVTT
  1. supported methods, whose configurations can be found in config/methods.yaml
  • ARB: autoregressive baseline
  • ARB2: ARB w/ visual word generation
  • NAB: non-autoregressive baseline
  • NACF: NAB w/ visual word generation & coarse-grained templates

Corpora/Feature Preparation

Preprocessed corpora and extracted features can be downloaded in the VC_data folder in GoogleDrive or BaiduYun (extract code 4k3i).

  • Following the structure below to place corpora and feature files:
    └── base_data_path
        ├── MSRVTT
        │   ├── feats
        │   │   ├── image_resnet101_imagenet_fps_max60.hdf5
        │   │   └── motion_resnext101_kinetics_duration16_overlap8.hdf5
        │   ├── info_corpus.pkl
        │   └── refs.pkl
        └── Youtube2Text
            ├── feats
            │   ├── image_resnet101_imagenet_fps_max60.hdf
            │   └── motion_resnext101_kinetics_duration16_overlap8.hdf5
            ├── info_corpus.pkl
            └── refs.pkl
    

Please remember to modify base_data_path in config/Constants.py

Alternatively, you can prepare data on your own (Note: some dependencies should be installed, e.g., nltk, pretrainedmodels).

  1. Preprocessing corpora:
    python prepare_corpora.py --dataset Youtube2Text --sort_vocab
    python prepare_corpora.py --dataset MSRVTT --sort_vocab
    
  2. Feature extraction:
  • Downloading all video files of Youtube2Text (MSVD) and MSRVTT
  • Extracting frames
    python pretreatment/extract_frames_from_videos.py \
    --video_path $path_to_video_files \
    --frame_path $path_to_save_frames \
    --video_suffix mp4 \
    --frame_suffix jpg \
    --strategy 1 \
    --fps 5 \
    --vframes 60
    
    • --video_suffix is mp4 For MSRVTT while avi for Youtube2Text.
    • When extracting frames for Youtube2Text, please pass the argument --info_path $base_data_path/Youtube2Text/info_corpus.pkl, which will map video names to vids (e.g., video0, ..., video1969).
  • Extracting image features
    python pretreatment/extract_image_feats_from_frames.py \
    --frame_path $path_to_load_frames \
    --feat_path $base_data_path/dataset_name \
    --feat_name image_resnet101_imagenet_fps_max60.hdf5 \
    --model resnet101 \
    --k 0 \
    --frame_suffix jpg \
    --gpu 3
    
  • Extracting motion features (Note: we should extract all frames of videos in advance)
    python pretreatment/extract_frames_from_videos.py \
    --video_path $path_to_video_files \
    --frame_path $path_to_save_frames \
    --video_suffix mp4 \
    --frame_suffix jpg \
    --strategy 0
    

Pretrained Models

We have provided the captioning models pre-trained on Youtube2Text (MSVD) and MSRVTT. Please refer to the experiments folder in GoogleDrive or BaiduYun (extract code lkmu).

  • Following the structure below to place pre-trained models:
    └── base_checkpoint_path
        ├── MSRVTT
        │   ├── ARB
        │   │   └── best.pth.tar
        │   ├── ARB2
        │   │   └── best.pth.tar
        │   ├── NAB
        │   │   └── best.pth.tar
        │   └── NACF
        │       └── best.pth.tar
        └── Youtube2Text
    

Please remember to modify base_checkpoint_path in config/Constants.py

Training

python train.py --default --dataset `dataset_name` --method `method_name`

Keypoints:

  • The --default argument specifies some necessary settings related to the dataset and method. With this argument, ARB should be trained first before the training of NAB or NACF because ARB by default serves as a teacher to re-score the captions generated by NAB or NACF.
  • After training, train.py will automatcally call translate.py to calculate the performance of the best model you have trained on validation and test sets. If you wanna teriminate this automatic call, pass the --no_test argument.
  • To run the script on cpu, run with the --no_cuda argument.

Examples:

python train.py --default --dataset MSRVTT --method ARB
python train.py --default --dataset MSRVTT --method NACF

Testing

python translate.py --default --dataset `dataset_name` --method `method_name`

Examples:

# NACF w/o ct
python translate.py --default --dataset MSRVTT --method NACF

# NACF w/ ct
python translate.py --default --dataset MSRVTT --method NACF --use_ct

# NACF using different algorithms
python translate.py --default --dataset MSRVTT --method NACF --use_ct --paradigm mp
python translate.py --default --dataset MSRVTT --method NACF --use_ct --paradigm ef
python translate.py --default --dataset MSRVTT --method NACF --use_ct --paradigm l2r

Citation

Please [★star] this repo and [cite] the following paper if you feel our code or models useful to your research:

@inproceedings{yang2021NACF,
  title={Non-Autoregressive Coarse-to-Fine Video Captioning}, 
  author={Yang, Bang and Zou, Yuexian and Liu, Fenglin and Zhang, Can},     
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={35},
  number={4},
  pages={3119-3127},
  year={2021}
}

Acknowledgements

Code of the decoding part is based on facebookresearch/Mask-Predict.

About

The PyTorch code of the AAAI2021 paper "Non-Autoregressive Coarse-to-Fine Video Captioning".

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 96.2%
  • Cython 3.8%