Skip to content

Commit

Permalink
update data
Browse files Browse the repository at this point in the history
  • Loading branch information
TsingZ0 committed Feb 5, 2025
1 parent a4a9edc commit 9d58e0a
Show file tree
Hide file tree
Showing 2 changed files with 6 additions and 6 deletions.
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -144,8 +144,8 @@ For the ***label skew*** scenario, we introduce **16** famous datasets:
- **GTSRB**
- **Shakespeare**
- **Stanford Cars**
- **COVIDx** (chest X-ray images for covid-19)
- **kvasir** (endoscopic images for gastrointestinal disease detection)
- **COVIDx**
- **kvasir**

The datasets can be easily split into **IID** and **non-IID** versions. In the **non-IID** scenario, we distinguish between two types of distribution:

Expand All @@ -165,7 +165,7 @@ For the ***feature shift*** scenario, we utilize **3** widely used datasets in D
### ***real-world*** scenario

For the ***real-world*** scenario, we introduce **5** naturally separated datasets:
- **Camelyon17** (tumor tissue patches extracted from breast cancer metastases in lymph node sections, 5 hospitals, 2 labels)
- **Camelyon17** (5 hospitals, 2 labels)
- **iWildCam** (194 camera traps, 158 labels)
- **Omniglot** (20 clients, 50 labels)
- **HAR (Human Activity Recognition)** (30 clients, 6 labels)
Expand Down
6 changes: 3 additions & 3 deletions docs/data.html
Original file line number Diff line number Diff line change
Expand Up @@ -199,8 +199,8 @@ <h3><em><strong>Label Skew</strong></em> Scenario</h3>
<li><strong>GTSRB</strong></li>
<li><strong>Shakespeare</strong></li>
<li><strong>Stanford Cars</strong></li>
<li><strong>COVIDx</strong> (chest X-ray images for covid-19)</li>
<li><strong>kvasir</strong> (endoscopic images for gastrointestinal disease detection)</li>
<li><strong>COVIDx</strong></li>
<li><strong>kvasir</strong></li>
</ul>

<p>The datasets can be easily split into <strong>IID</strong> and <strong>non-IID</strong> versions. In the <strong>non-IID</strong> scenario, we distinguish between two types of distribution:</p>
Expand All @@ -225,7 +225,7 @@ <h3><em><strong>Real-World</strong></em> Scenario</h3>

<p>For the <strong>real-world</strong> scenario, we introduce <strong>5</strong> naturally separated datasets:</p>
<ul>
<li><strong>Camelyon17</strong> (tumor tissue patches extracted from breast cancer metastases in lymph node sections, 5 hospitals, 2 labels)</li>
<li><strong>Camelyon17</strong> (5 hospitals, 2 labels)</li>
<li><strong>iWildCam</strong> (194 camera traps, 158 labels)</li>
<li><strong>Omniglot</strong> (20 clients, 50 labels)</li>
<li><strong>HAR (Human Activity Recognition)</strong> (30 clients, 6 labels, see examples <a href="#exp-har">here</a>)</li>
Expand Down

0 comments on commit 9d58e0a

Please sign in to comment.