Skip to content

ToyotaCRDL/OneShotDIL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

One-Shot Domain Incremental Learning

This is an official Pytorch implementation of "One-Shot Domain Incremental Learning". This study was presented at IJCNN 2024. [arXiv|IEEE Xplore]

overview

Preparation

  1. Git clone this repository.

    git clone https://github.com/ToyotaCRDL/OneShotDIL.git
  2. Build a Docker image using Dockerfile and requrements.txt.

    docker build --build-arg USER=${USER} -t one-shot-dil OneShotDIL
  3. Launch a container.

    docker run -it --rm --gpus all \
            --mount type=bind,source=$(pwd)/OneShotDIL,target=${HOME}/OneShotDIL \
            --workdir ${HOME}/OneShotDIL \
            one-shot-dil

We conducted our experiments on a NVIDIA A100 GPU.

Training

  • The following is a demonstration of CIFAR10.

    1. Train a model using only the original domain.

      bash scripts/cifar10/only_original_domain.sh
    2. Perform one-shot domain incremental learning using the new domain.

      • Standard method (updated-stats)

        bash scripts/cifar10/updated_stats_dil.sh
      • Proposed method (fixed-stats)

        bash scripts/cifar10/fixed_stats_dil.sh

Evaluation

  • Calculate the test accuracy before and after performing one-shot domain incremental learning.

    • Standard method (updated-stats)

      bash scripts/cifar10/updated_stats_eval.sh
    • Proposed method (fixed-stats)

      bash scripts/cifar10/fixed_stats_eval.sh

Citation

To cite our work, you can use the following:

@inproceedings{OneShotDIL,
  author={Esaki, Yasushi and Koide, Satoshi and Kutsuna, Takuro},
  booktitle={2024 International Joint Conference on Neural Networks (IJCNN)}, 
  title={One-Shot Domain Incremental Learning}, 
  year={2024},
  doi={10.1109/IJCNN60899.2024.10650928}
}

License

Copyright (C) 2025 TOYOTA CENTRAL R&D LABS., INC. All Rights Reserved.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published