This is an official Pytorch implementation of "One-Shot Domain Incremental Learning". This study was presented at IJCNN 2024. [arXiv|IEEE Xplore]
-
Git clone this repository.
git clone https://github.com/ToyotaCRDL/OneShotDIL.git
-
Build a Docker image using
Dockerfile
andrequrements.txt
.docker build --build-arg USER=${USER} -t one-shot-dil OneShotDIL
-
Launch a container.
docker run -it --rm --gpus all \ --mount type=bind,source=$(pwd)/OneShotDIL,target=${HOME}/OneShotDIL \ --workdir ${HOME}/OneShotDIL \ one-shot-dil
We conducted our experiments on a NVIDIA A100 GPU.
-
The following is a demonstration of CIFAR10.
-
Train a model using only the original domain.
bash scripts/cifar10/only_original_domain.sh
-
Perform one-shot domain incremental learning using the new domain.
-
Standard method (updated-stats)
bash scripts/cifar10/updated_stats_dil.sh
-
Proposed method (fixed-stats)
bash scripts/cifar10/fixed_stats_dil.sh
-
-
-
Calculate the test accuracy before and after performing one-shot domain incremental learning.
-
Standard method (updated-stats)
bash scripts/cifar10/updated_stats_eval.sh
-
Proposed method (fixed-stats)
bash scripts/cifar10/fixed_stats_eval.sh
-
To cite our work, you can use the following:
@inproceedings{OneShotDIL,
author={Esaki, Yasushi and Koide, Satoshi and Kutsuna, Takuro},
booktitle={2024 International Joint Conference on Neural Networks (IJCNN)},
title={One-Shot Domain Incremental Learning},
year={2024},
doi={10.1109/IJCNN60899.2024.10650928}
}
Copyright (C) 2025 TOYOTA CENTRAL R&D LABS., INC. All Rights Reserved.