forked from AMReX-Codes/amrex
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ParallelFor with compile time optimization of kernels with run time p…
…arameters (AMReX-Codes#2954) Branches inside ParallelFor can be very expensive. If a branch uses a lot of resources (e.g., registers), it can significantly affect the performance even if at run time the branch is never executed because it affects the GPU occupancy. For CPUs, it can affect vectorization of the kernel. The new ParallelFor functions use C++17 fold expression to generate kernel launches for all run time variants. Only one will be executed. Which one is chosen at run time depends the run time parameters. The kernel function can use constexpr if to discard unused code blocks for better run time performance. Here are two examples of how to use them. int runtime_option = ...; enum All_options : int { A0, A1, A2, A3}; // Four ParallelFors will be generated. ParallelFor(TypeList<CompileTimeOptions<A0,A1,A2,A3>>{}, {runtime_option}, box, [=] AMREX_GPU_DEVICE (int i, int j, int k, auto control) { ... if constexpr (control.value == A0) { ... } else if constexpr (control.value == A1) { ... } else if constexpr (control.value == A2) { ... else { ... } ... }); and int A_runtime_option = ...; int B_runtime_option = ...; enum A_options : int { A0, A1, A2, A3}; enum B_options : int { B0, B1 }; // 4*2=8 ParallelFors will be generated. ParallelFor(TypeList<CompileTimeOptions<A0,A1,A2,A3>, CompileTimeOptions<B0,B1> > {}, {A_runtime_option, B_runtime_option}, N, [=] AMREX_GPU_DEVICE (int i, auto A_control, auto B_control) { ... if constexpr (A_control.value == A0) { ... } else if constexpr (A_control.value == A1) { ... } else if constexpr (A_control.value == A2) { ... else { ... } if constexpr (A_control.value != A3 && B_control.value == B1) { ... } ... }); Note that that due to a limitation of CUDA's extended device lambda, the constexpr if block cannot be the one that captures a variable first. If nvcc complains about it, you will have to manually capture it outside constexpr if. The data type for the parameters is int. Thank Maikel Nadolski and Alex Sinn for showing us the meta-programming techniques used here.
- Loading branch information
1 parent
bcbf17f
commit 56b6402
Showing
9 changed files
with
431 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,331 @@ | ||
#ifndef AMREX_CTO_PARALLEL_FOR_H_ | ||
#define AMREX_CTO_PARALLEL_FOR_H_ | ||
|
||
#include <AMReX_BLassert.H> | ||
#include <AMReX_Box.H> | ||
#include <AMReX_Tuple.H> | ||
|
||
#include <array> | ||
#include <type_traits> | ||
|
||
/* This header is not for the users to include directly. It's meant to be | ||
* included in AMReX_GpuLaunch.H, which has included the headers needed | ||
* here. */ | ||
|
||
/* Thank Maikel Nadolski and Alex Sinn for the techniques used here! */ | ||
|
||
namespace amrex { | ||
|
||
template <int... ctr> | ||
struct CompileTimeOptions { | ||
// TypeList is defined in AMReX_Tuple.H | ||
using list_type = TypeList<std::integral_constant<int, ctr>...>; | ||
}; | ||
|
||
#if (__cplusplus >= 201703L) | ||
|
||
namespace meta | ||
{ | ||
template <typename... As, typename... Bs> | ||
constexpr auto operator+ (TypeList<As...>, TypeList<Bs...>) { | ||
return TypeList<As..., Bs...>{}; | ||
} | ||
|
||
template <typename... Ls, typename A> | ||
constexpr auto single_product (TypeList<Ls...>, A) { | ||
return TypeList<decltype(Ls{} + TypeList<A>{})...>{}; | ||
} | ||
|
||
template <typename LLs, typename... As> | ||
constexpr auto operator* (LLs, TypeList<As...>) { | ||
return (TypeList<>{} + ... + single_product(LLs{}, As{})); | ||
} | ||
|
||
template <typename... Ls> | ||
constexpr auto cartesian_product_n (TypeList<Ls...>) { | ||
return (TypeList<TypeList<>>{} * ... * Ls{}); | ||
} | ||
} | ||
|
||
namespace detail | ||
{ | ||
template <int MT, typename T, class F, typename... As> | ||
std::enable_if_t<std::is_integral<T>::value || std::is_same<T,Box>::value, bool> | ||
ParallelFor_helper2 (T const& N, F&& f, TypeList<As...>, | ||
std::array<int,sizeof...(As)> const& runtime_options) | ||
{ | ||
if (runtime_options == std::array<int,sizeof...(As)>{As::value...}) { | ||
if constexpr (std::is_integral<T>::value) { | ||
ParallelFor<MT>(N, [f] AMREX_GPU_DEVICE (T i) noexcept | ||
{ | ||
f(i, As{}...); | ||
}); | ||
} else { | ||
ParallelFor<MT>(N, [f] AMREX_GPU_DEVICE (int i, int j, int k) noexcept | ||
{ | ||
f(i, j, k, As{}...); | ||
}); | ||
} | ||
return true; | ||
} else { | ||
return false; | ||
} | ||
} | ||
|
||
template <int MT, typename T, class F, typename... As> | ||
std::enable_if_t<std::is_integral<T>::value, bool> | ||
ParallelFor_helper2 (Box const& box, T ncomp, F&& f, TypeList<As...>, | ||
std::array<int,sizeof...(As)> const& runtime_options) | ||
{ | ||
if (runtime_options == std::array<int,sizeof...(As)>{As::value...}) { | ||
ParallelFor<MT>(box, ncomp, [f] AMREX_GPU_DEVICE (int i, int j, int k, T n) noexcept | ||
{ | ||
f(i, j, k, n, As{}...); | ||
}); | ||
return true; | ||
} else { | ||
return false; | ||
} | ||
} | ||
|
||
template <int MT, typename T, class F, typename... PPs, typename RO> | ||
std::enable_if_t<std::is_integral<T>::value || std::is_same<T,Box>::value> | ||
ParallelFor_helper1 (T const& N, F&& f, TypeList<PPs...>, | ||
RO const& runtime_options) | ||
{ | ||
bool found_option = (false || ... || | ||
ParallelFor_helper2<MT>(N, std::forward<F>(f), | ||
PPs{}, runtime_options)); | ||
amrex::ignore_unused(found_option); | ||
AMREX_ASSERT(found_option); | ||
} | ||
|
||
template <int MT, typename T, class F, typename... PPs, typename RO> | ||
std::enable_if_t<std::is_integral<T>::value> | ||
ParallelFor_helper1 (Box const& box, T ncomp, F&& f, TypeList<PPs...>, | ||
RO const& runtime_options) | ||
{ | ||
bool found_option = (false || ... || | ||
ParallelFor_helper2<MT>(box, ncomp, std::forward<F>(f), | ||
PPs{}, runtime_options)); | ||
amrex::ignore_unused(found_option); | ||
AMREX_ASSERT(found_option); | ||
} | ||
} | ||
|
||
#endif | ||
|
||
template <int MT, typename T, class F, typename... CTOs> | ||
std::enable_if_t<std::is_integral<T>::value> | ||
ParallelFor (TypeList<CTOs...> /*list_of_compile_time_options*/, | ||
std::array<int,sizeof...(CTOs)> const& runtime_options, | ||
T N, F&& f) | ||
{ | ||
#if (__cplusplus >= 201703L) | ||
using OptionsListList = TypeList<typename CTOs::list_type...>; | ||
detail::ParallelFor_helper1<MT>(N, std::forward<F>(f), | ||
meta::cartesian_product_n(OptionsListList{}), | ||
runtime_options); | ||
#else | ||
amrex::ignore_unused(N, f, runtime_options); | ||
static_assert(std::is_integral<F>::value, "This requires C++17"); | ||
#endif | ||
} | ||
|
||
template <int MT, class F, typename... CTOs> | ||
void ParallelFor (TypeList<CTOs...> /*list_of_compile_time_options*/, | ||
std::array<int,sizeof...(CTOs)> const& runtime_options, | ||
Box const& box, F&& f) | ||
{ | ||
#if (__cplusplus >= 201703L) | ||
using OptionsListList = TypeList<typename CTOs::list_type...>; | ||
detail::ParallelFor_helper1<MT>(box, std::forward<F>(f), | ||
meta::cartesian_product_n(OptionsListList{}), | ||
runtime_options); | ||
#else | ||
amrex::ignore_unused(box, f, runtime_options); | ||
static_assert(std::is_integral<F>::value, "This requires C++17"); | ||
#endif | ||
} | ||
|
||
template <int MT, typename T, class F, typename... CTOs> | ||
std::enable_if_t<std::is_integral<T>::value> | ||
ParallelFor (TypeList<CTOs...> /*list_of_compile_time_options*/, | ||
std::array<int,sizeof...(CTOs)> const& runtime_options, | ||
Box const& box, T ncomp, F&& f) | ||
{ | ||
#if (__cplusplus >= 201703L) | ||
using OptionsListList = TypeList<typename CTOs::list_type...>; | ||
detail::ParallelFor_helper1<MT>(box, ncomp, std::forward<F>(f), | ||
meta::cartesian_product_n(OptionsListList{}), | ||
runtime_options); | ||
#else | ||
amrex::ignore_unused(box, ncomp, f, runtime_options); | ||
static_assert(std::is_integral<F>::value, "This requires C++17"); | ||
#endif | ||
} | ||
|
||
/** | ||
* \brief ParallelFor with compile time optimization of kernels with run time options. | ||
* | ||
* It uses fold expression to generate kernel launches for all combinations | ||
* of the run time options. The kernel function can use constexpr if to | ||
* discard unused code blocks for better run time performance. In the | ||
* example below, the code will be expanded into 4*2=8 normal ParallelFors | ||
* for all combinations of the run time parameters. | ||
\verbatim | ||
int A_runtime_option = ...; | ||
int B_runtime_option = ...; | ||
enum A_options : int { A0, A1, A2, A3}; | ||
enum B_options : int { B0, B1 }; | ||
ParallelFor(TypeList<CompileTimeOptions<A0,A1,A2,A3>, | ||
CompileTimeOptions<B0,B1>>{}, | ||
{A_runtime_option, B_runtime_option}, | ||
N, [=] AMREX_GPU_DEVICE (int i, auto A_control, auto B_control) | ||
{ | ||
... | ||
if constexpr (A_control.value == A0) { | ||
... | ||
} else if constexpr (A_control.value == A1) { | ||
... | ||
} else if constexpr (A_control.value == A2) { | ||
... | ||
else { | ||
... | ||
} | ||
if constexpr (A_control.value != A3 && B_control.value == B1) { | ||
... | ||
} | ||
... | ||
}); | ||
\endverbatim | ||
* Note that due to a limitation of CUDA's extended device lambda, the | ||
* constexpr if block cannot be the one that captures a variable first. | ||
* If nvcc complains about it, you will have to manually capture it outside | ||
* constexpr if. The data type for the parameters is int. | ||
* | ||
* \param ctos list of all possible values of the parameters. | ||
* \param option the run time parameters. | ||
* \param N an interger specifying the 1D for loop's range. | ||
* \param f a callable object taking an integer and working on that iteration. | ||
*/ | ||
template <typename T, class F, typename... CTOs> | ||
std::enable_if_t<std::is_integral<T>::value> | ||
ParallelFor (TypeList<CTOs...> ctos, | ||
std::array<int,sizeof...(CTOs)> const& option, | ||
T N, F&& f) | ||
{ | ||
ParallelFor<AMREX_GPU_MAX_THREADS>(ctos, option, N, std::forward<F>(f)); | ||
} | ||
|
||
/** | ||
* \brief ParallelFor with compile time optimization of kernels with run time options. | ||
* | ||
* It uses fold expression to generate kernel launches for all combinations | ||
* of the run time options. The kernel function can use constexpr if to | ||
* discard unused code blocks for better run time performance. In the | ||
* example below, the code will be expanded into 4*2=8 normal ParallelFors | ||
* for all combinations of the run time parameters. | ||
\verbatim | ||
int A_runtime_option = ...; | ||
int B_runtime_option = ...; | ||
enum A_options : int { A0, A1, A2, A3}; | ||
enum B_options : int { B0, B1 }; | ||
ParallelFor(TypeList<CompileTimeOptions<A0,A1,A2,A3>, | ||
CompileTimeOptions<B0,B1>>{}, | ||
{A_runtime_option, B_runtime_option}, | ||
box, [=] AMREX_GPU_DEVICE (int i, int j, int k, | ||
auto A_control, auto B_control) | ||
{ | ||
... | ||
if constexpr (A_control.value == A0) { | ||
... | ||
} else if constexpr (A_control.value == A1) { | ||
... | ||
} else if constexpr (A_control.value == A2) { | ||
... | ||
else { | ||
... | ||
} | ||
if constexpr (A_control.value != A3 && B_control.value == B1) { | ||
... | ||
} | ||
... | ||
}); | ||
\endverbatim | ||
* Note that due to a limitation of CUDA's extended device lambda, the | ||
* constexpr if block cannot be the one that captures a variable first. | ||
* If nvcc complains about it, you will have to manually capture it outside | ||
* constexpr if. The data type for the parameters is int. | ||
* | ||
* \param ctos list of all possible values of the parameters. | ||
* \param option the run time parameters. | ||
* \param box a Box specifying the 3D for loop's range. | ||
* \param f a callable object taking three integers and working on the given cell. | ||
*/ | ||
template <class F, typename... CTOs> | ||
void ParallelFor (TypeList<CTOs...> ctos, | ||
std::array<int,sizeof...(CTOs)> const& option, | ||
Box const& box, F&& f) | ||
{ | ||
ParallelFor<AMREX_GPU_MAX_THREADS>(ctos, option, box, std::forward<F>(f)); | ||
} | ||
|
||
/** | ||
* \brief ParallelFor with compile time optimization of kernels with run time options. | ||
* | ||
* It uses fold expression to generate kernel launches for all combinations | ||
* of the run time options. The kernel function can use constexpr if to | ||
* discard unused code blocks for better run time performance. In the | ||
* example below, the code will be expanded into 4*2=8 normal ParallelFors | ||
* for all combinations of the run time parameters. | ||
\verbatim | ||
int A_runtime_option = ...; | ||
int B_runtime_option = ...; | ||
enum A_options : int { A0, A1, A2, A3}; | ||
enum B_options : int { B0, B1 }; | ||
ParallelFor(TypeList<CompileTimeOptions<A0,A1,A2,A3>, | ||
CompileTimeOptions<B0,B1>>{}, | ||
{A_runtime_option, B_runtime_option}, | ||
box, ncomp, [=] AMREX_GPU_DEVICE (int i, int j, int k, int n, | ||
auto A_control, auto B_control) | ||
{ | ||
... | ||
if constexpr (A_control.value == A0) { | ||
... | ||
} else if constexpr (A_control.value == A1) { | ||
... | ||
} else if constexpr (A_control.value == A2) { | ||
... | ||
else { | ||
... | ||
} | ||
if constexpr (A_control.value != A3 && B_control.value == B1) { | ||
... | ||
} | ||
... | ||
}); | ||
\endverbatim | ||
* Note that due to a limitation of CUDA's extended device lambda, the | ||
* constexpr if block cannot be the one that captures a variable first. | ||
* If nvcc complains about it, you will have to manually capture it outside | ||
* constexpr if. The data type for the parameters is int. | ||
* | ||
* \param ctos list of all possible values of the parameters. | ||
* \param option the run time parameters. | ||
* \param box a Box specifying the iteration in 3D space. | ||
* \param ncomp an integer specifying the range for iteration over components. | ||
* \param f a callable object taking three integers and working on the given cell. | ||
*/ | ||
template <typename T, class F, typename... CTOs> | ||
std::enable_if_t<std::is_integral<T>::value> | ||
ParallelFor (TypeList<CTOs...> ctos, | ||
std::array<int,sizeof...(CTOs)> const& option, | ||
Box const& box, T ncomp, F&& f) | ||
{ | ||
ParallelFor<AMREX_GPU_MAX_THREADS>(ctos, option, box, ncomp, std::forward<F>(f)); | ||
} | ||
|
||
} | ||
|
||
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -550,4 +550,6 @@ namespace Gpu { | |
|
||
#endif | ||
|
||
#include <AMReX_CTOParallelForImpl.H> | ||
|
||
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
set(_sources main.cpp) | ||
set(_input_files) | ||
|
||
setup_test(_sources _input_files) | ||
|
||
unset(_sources) | ||
unset(_input_files) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
AMREX_HOME = ../../ | ||
|
||
DEBUG = FALSE | ||
DIM = 3 | ||
COMP = gcc | ||
|
||
USE_MPI = FALSE | ||
USE_OMP = FALSE | ||
USE_CUDA = FALSE | ||
|
||
TINY_PROFILE = FALSE | ||
|
||
CXXSTD = c++17 | ||
|
||
include $(AMREX_HOME)/Tools/GNUMake/Make.defs | ||
|
||
include ./Make.package | ||
include $(AMREX_HOME)/Src/Base/Make.package | ||
|
||
include $(AMREX_HOME)/Tools/GNUMake/Make.rules |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
CEXE_sources += main.cpp | ||
|
||
|
||
|
Oops, something went wrong.