Online exploration of memory reduction strategies of a DRL agent trained to solve a navigation task on ViZDoom.
Authors: Théo Jaunet, Romain Vuillemot and Christian Wolf.
This tool is accessible using the following link: https://theo-jaunet.github.io/MemoryReduction/. (designed to work on desktop with google chrome)
To run this interface locally, download or clone this repository
git clone https://github.com/Theo-Jaunet/MemoryReduction.git
Open the downloaded directory and start any server. For demonstration sake we used: SimpleHTTPServer
python -m SimpleHTTPServer 8000
Once the server is launched, you should be able to access the explorable at: http://localhost:8000/.
For more information on this task and model, please check Edward Beeching's github repo.
If you find this work useful, please consider using the follwing citing template:
@inproceedings{Jaunet:2019,
author = {Theo Jaunet, Romain Vuillemot, Christian Wolf},
title = {What if we Reduce the Memory of an Artificial Doom Player?},
journal = {Proceedings of the Workshop on Visualization for AI explainability (VISxAI)},
year = {2019},
editors = {Mennatallah El-Assady, Duen Horng (Polo) Chau, Fred Hohman, Adam Perer, Hendrik Strobelt, Fernanda Viégas}
url = {https://theo-jaunet.github.io/MemoryReduction/}
}