-
Notifications
You must be signed in to change notification settings - Fork 44
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #731 from JHL-452b/feat_smiles_inchi
Feat: added smiles and inchi of metabolites
- Loading branch information
Showing
2 changed files
with
8,658 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
import pandas as pd | ||
df = pd.read_excel('./Human-GEM.xlsx',sheet_name='METS') | ||
df1 = pd.read_excel('./metabolites_smiles_.xlsx') | ||
df2 = pd.merge(df,df1,on='REPLACEMENT ID',how='left') | ||
df2.to_excel('./metabolites_smiles.xlsx',index=False) | ||
|
||
|
||
import pandas as pd | ||
df = pd.read_excel('./metabolites_smiles.xlsx') | ||
df1 = pd.read_csv('./database/mnx_chem_depr.tsv', sep='\t') | ||
id = df1['deprecated_ID'].tolist() | ||
df['metMetaNetXID_new'] = '' | ||
for i in range(len(df)): | ||
if df['metMetaNetXID'][i] in id: | ||
index = id.index(df['metMetaNetXID'][i]) | ||
df['metMetaNetXID_new'][i] = df1['ID'][index] | ||
df.to_excel('./metabolites_smiles.xlsx', index=False) | ||
|
||
|
||
#get SMILES from database and model | ||
import pandas as pd | ||
from tqdm import tqdm | ||
#df = pd.read_csv('./database/chebi_id_smiles.csv') | ||
df = pd.read_csv('./database/kegg_compound.txt', sep='\t') | ||
#df = pd.read_csv('./database/chebi_second_id_smiles.csv') | ||
#df = pd.read_csv('./database/recon3d_smiles.csv') | ||
|
||
#id = df['ChEBI ID'].to_list() | ||
id = df['KEGG'].to_list() | ||
#id = df['Secondary ChEBI ID'].to_list() | ||
#id = df['metRecon3DID'].to_list() | ||
df1 = pd.read_excel('./metabolites_smiles.xlsx') | ||
#s = 'metChEBIID' | ||
s = 'metKEGGID' | ||
#s = 'metRecon3DID' | ||
#df1['SMILES'] = None | ||
for i in tqdm(range(len(df1)),total=len(df1)): | ||
if df1['SMILES'].isna()[i] == False: | ||
continue | ||
try: | ||
if i == 0: | ||
if df1[s].isna()[i] == True: | ||
continue | ||
else: | ||
if df1[s][i] in id: | ||
index = id.index(df1[s][i]) | ||
df1['SMILES'][i] = df['SMILES'][index] | ||
|
||
else: | ||
if df1[s][i] == df1[s][i-1]: | ||
continue | ||
else: | ||
if df1[s].isna()[i] == True: | ||
continue | ||
else: | ||
if df1[s][i] in id: | ||
index = id.index(df1[s][i]) | ||
df1['SMILES'][i] = df['SMILES'][index] | ||
except: | ||
continue | ||
|
||
for i in tqdm(range(len(df1)),total=len(df1)): | ||
if i != 0: | ||
if df1[s][i] == df1[s][i-1]: | ||
df1['SMILES'][i] = df1['SMILES'][i-1] | ||
|
||
df1.to_excel('metabolites_smiles.xlsx', index=False) | ||
|
||
|
||
#get SMILES from database and model | ||
import pandas as pd | ||
from tqdm import tqdm | ||
|
||
df = pd.read_csv('./database/mnx_chem_prop.tsv', sep='\t') | ||
id = df['id'].to_list() | ||
|
||
df1 = pd.read_excel('./metabolites_smiles.xlsx') | ||
s = 'metMetaNetXID' | ||
for i in tqdm(range(len(df1)),total=len(df1)): | ||
if df1['SMILES'].isna()[i] == False: | ||
continue | ||
try: | ||
if i == 0: | ||
if df1[s].isna()[i] == True: | ||
continue | ||
else: | ||
for j in df1[s][i].split(';'): | ||
if j in id: | ||
index = id.index(j) | ||
df1['SMILES'][i] = df['SMILES'][index] | ||
break | ||
|
||
else: | ||
if df1[s][i] == df1[s][i-1]: | ||
continue | ||
else: | ||
if df1[s].isna()[i] == True: | ||
continue | ||
else: | ||
|
||
for j in df1[s][i].split(';'): | ||
if j in id: | ||
index = id.index(j) | ||
df1['SMILES'][i] = df['SMILES'][index] | ||
break | ||
except: | ||
continue | ||
|
||
for i in tqdm(range(len(df1)),total=len(df1)): | ||
if i != 0: | ||
if df1[s][i] == df1[s][i-1]: | ||
df1['SMILES'][i] = df1['SMILES'][i-1] | ||
|
||
df1.to_excel('metabolites_smiles.xlsx', index=False) | ||
|
||
|
||
import pubchempy as pcp | ||
|
||
import pandas as pd | ||
from tqdm import tqdm | ||
failed = [] | ||
df1 = pd.read_excel('./metabolites_smiles.xlsx') | ||
#df1['SMILES'] = '' | ||
for i in tqdm(range(len(df1)),total=len(df1)): | ||
if df1['SMILES'].isna()[i] == False: | ||
continue | ||
try: | ||
#df1['metChEBIID'][i] = df1['metChEBIID'][i].replace('CHEBI:','') | ||
if i == 0: | ||
if df1['metPubChemID'].isna()[i] == True: | ||
continue | ||
else: | ||
cid = int(df1['metPubChemID'][i]) | ||
df1['SMILES'][i] = pcp.Compound.from_cid(cid).isomeric_smiles | ||
else: | ||
if df1['metsNoComp'][i] == df1['metsNoComp'][i-1]: | ||
continue | ||
else: | ||
if df1['metPubChemID'].isna()[i] == True: | ||
continue | ||
else: | ||
cid = int(df1['metPubChemID'][i]) | ||
df1['SMILES'][i] = pcp.Compound.from_cid(cid).isomeric_smiles | ||
#print(df1['SMILES'][i]) | ||
except: | ||
failed.append(df1['metPubChemID'][i]) | ||
continue | ||
for i in tqdm(range(len(df1)),total=len(df1)): | ||
if i != 0: | ||
if df1[s][i] == df1[s][i-1]: | ||
df1['SMILES'][i] = df1['SMILES'][i-1] | ||
df1.to_excel('./metabolites_smiles.xlsx', index=False) | ||
# Get the SMILES string of the compound | ||
|
||
|
||
from rdkit import Chem | ||
def standardize_smiles(smiles): | ||
mol = Chem.MolFromSmiles(smiles) | ||
if mol is None: | ||
return None | ||
return Chem.MolToSmiles(mol) | ||
df = pd.read_excel('metabolites_smiles.xlsx') | ||
df['standard_smiles'] = df['SMILES'].apply(standardize_smiles) | ||
df.to_excel('metabolites_smiles.xlsx', index=False) | ||
|
||
|
||
|
||
filepath = 'D:\\All_Human_GTEx\\' | ||
df_model_mets = pd.read_excel(filepath+'metabolites.xlsx') | ||
# df_HMDB_mets = pd.read_excel(filepath+'副本hmdb_metabolites_217920_orign.xlsx') | ||
|
||
mets_id1 = df_model_mets['mets'].values.tolist() | ||
mets_id2 = df_model_mets['metsNoComp'].values.tolist() | ||
mets_SMILE = df_model_mets['SMILES'].values.tolist() | ||
|
||
mets_inchikey = [] | ||
mets_inchi = [] | ||
for i in mets_SMILE: | ||
i = str(i) | ||
if i == 'nan': | ||
mets_inchikey.append('') | ||
mets_inchi.append('') | ||
|
||
elif i.startswith('*'): | ||
mets_inchikey.append('') | ||
mets_inchi.append('') | ||
|
||
else: | ||
# print(i) | ||
mol = Chem.MolFromSmiles(i) | ||
mets_inchikey.append(Chem.MolToInchiKey(mol)) | ||
mets_inchi.append(Chem.MolToInchi(mol)) | ||
|
||
filepath1 = 'D:\\All_Human_GTEx\\' | ||
output = {'mets':mets_id1, 'metsNoComp':mets_id2, 'SMILES': mets_SMILE, 'inchikey':mets_inchikey, 'inchi':mets_inchi} | ||
output_tsv = pd.DataFrame(output) | ||
output_tsv.to_csv(filepath1+'metabolites_SMILES_Inchi.tsv', sep="\t", index=False) |
Oops, something went wrong.