Official repository of Class Incremental Learning Based on Identically Distributed Parallel One-Class Classifiers
Published at NeuroComputing
- Use
./utils/main.py
to run experiments. - Some training result can be found in folder
./result
.
Class-IL / Task-IL settings
- Sequential MNIST
- Sequential CIFAR-10
- Sequential CIFAR-100
- Sequential Tiny ImageNet
MNIST | CIFAR10 | CIFAR100 | Tiny-ImageNet | |
---|---|---|---|---|
DER++ | 85.61 | 64.88 | 24.75 | 10.96 |
LWF | 21.62 | 19.59 | 9.20 | 9.36 |
OWM | 96.30 | 52.83 | 27.63 | 15.30 |
ILCOC | 86.05 | 38.40 | 24.39 | 16.97 |
DisCOIL | 96.69 | 44.54 | 27.50 | 19.75 |
IDPOC | 87.51 | 55.50 | 29.08 | 22.55 |
- numpy==1.16.4
- Pillow==6.1.0
- torch==1.3.1
- torchvision==0.4.2
https://github.com/aimagelab/mammoth
@article{sun2023class,
title={Class Incremental Learning based on Identically Distributed Parallel One-Class Classifiers},
author={Sun, Wenju and Li, Qingyong and Zhang, Jing and Wang, Wen and Geng, YangLi-ao},
journal={Neurocomputing},
volume={556},
pages={126579},
year={2023},
publisher={Elsevier}
}