Emoji-Prediction-From-Text is a text classification model trained on 200 sentences across 5 classes, using sentiment analysis. Below fig. shows the list of emoji's on which the model is trained on. Text to the side represents a high-level emotion that the emoji depicts. 😎
Note:Used Python 3.7 specifically.
1.Train the model locally. 2. python main.py
2. Open emoji.html in the browser and start typing 💬
Model: "TextClassifier(
(document_embeddings): DocumentRNNEmbeddings(
(embeddings): StackedEmbeddings(
(list_embedding_0): WordEmbeddings('glove')
(list_embedding_1): FlairEmbeddings(
(lm): LanguageModel(
(drop): Dropout(p=0.05, inplace=False)
(encoder): Embedding(300, 100)
(rnn): LSTM(100, 2048)
(decoder): Linear(in_features=2048, out_features=300, bias=True)
)
)
(list_embedding_2): FlairEmbeddings(
(lm): LanguageModel(
(drop): Dropout(p=0.05, inplace=False)
(encoder): Embedding(300, 100)
(rnn): LSTM(100, 2048)
(decoder): Linear(in_features=2048, out_features=300, bias=True)
)
)
(list_embedding_3): ELMoEmbeddings(model=elmo-medium)
)
(word_reprojection_map): Linear(in_features=5732, out_features=256, bias=True)
(rnn): LSTM(256, 512)
(dropout): Dropout(p=0.5, inplace=False)
)
(decoder): Linear(in_features=512, out_features=5, bias=True)
(loss_function): CrossEntropyLoss()
)"
- Flask
- Flair
- HTML/Bootstrap
- Js