Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Log success rate for PPO variants #235

Merged
merged 1 commit into from
Mar 31, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 3 additions & 15 deletions sb3_contrib/ppo_mask/ppo_mask.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,3 @@
import sys
import time
from typing import Any, ClassVar, Dict, Optional, Tuple, Type, TypeVar, Union

import numpy as np
Expand All @@ -10,7 +8,7 @@
from stable_baselines3.common.on_policy_algorithm import OnPolicyAlgorithm
from stable_baselines3.common.policies import BasePolicy
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
from stable_baselines3.common.utils import explained_variance, get_schedule_fn, obs_as_tensor, safe_mean
from stable_baselines3.common.utils import explained_variance, get_schedule_fn, obs_as_tensor
from stable_baselines3.common.vec_env import VecEnv
from torch.nn import functional as F

Expand Down Expand Up @@ -241,7 +239,7 @@ def collect_rollouts(
if not callback.on_step():
return False

self._update_info_buffer(infos)
self._update_info_buffer(infos, dones)
n_steps += 1

if isinstance(self.action_space, spaces.Discrete):
Expand Down Expand Up @@ -463,17 +461,7 @@ def learn( # type: ignore[override]

# Display training infos
if log_interval is not None and iteration % log_interval == 0:
assert self.ep_info_buffer is not None
time_elapsed = max((time.time_ns() - self.start_time) / 1e9, sys.float_info.epsilon)
fps = int((self.num_timesteps - self._num_timesteps_at_start) / time_elapsed)
self.logger.record("time/iterations", iteration, exclude="tensorboard")
if len(self.ep_info_buffer) > 0 and len(self.ep_info_buffer[0]) > 0:
self.logger.record("rollout/ep_rew_mean", safe_mean([ep_info["r"] for ep_info in self.ep_info_buffer]))
self.logger.record("rollout/ep_len_mean", safe_mean([ep_info["l"] for ep_info in self.ep_info_buffer]))
self.logger.record("time/fps", fps)
self.logger.record("time/time_elapsed", int(time_elapsed), exclude="tensorboard")
self.logger.record("time/total_timesteps", self.num_timesteps, exclude="tensorboard")
self.logger.dump(step=self.num_timesteps)
self._dump_logs(iteration)

self.train()

Expand Down
51 changes: 9 additions & 42 deletions sb3_contrib/ppo_recurrent/ppo_recurrent.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,3 @@
import sys
import time
from copy import deepcopy
from typing import Any, ClassVar, Dict, Optional, Type, TypeVar, Union

Expand All @@ -11,7 +9,7 @@
from stable_baselines3.common.on_policy_algorithm import OnPolicyAlgorithm
from stable_baselines3.common.policies import BasePolicy
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, Schedule
from stable_baselines3.common.utils import explained_variance, get_schedule_fn, obs_as_tensor, safe_mean
from stable_baselines3.common.utils import explained_variance, get_schedule_fn, obs_as_tensor
from stable_baselines3.common.vec_env import VecEnv

from sb3_contrib.common.recurrent.buffers import RecurrentDictRolloutBuffer, RecurrentRolloutBuffer
Expand Down Expand Up @@ -260,7 +258,7 @@ def collect_rollouts(
if not callback.on_step():
return False

self._update_info_buffer(infos)
self._update_info_buffer(infos, dones)
n_steps += 1

if isinstance(self.action_space, spaces.Discrete):
Expand Down Expand Up @@ -453,42 +451,11 @@ def learn(
reset_num_timesteps: bool = True,
progress_bar: bool = False,
) -> SelfRecurrentPPO:
iteration = 0

total_timesteps, callback = self._setup_learn(
total_timesteps,
callback,
reset_num_timesteps,
tb_log_name,
progress_bar,
return super().learn(
total_timesteps=total_timesteps,
callback=callback,
log_interval=log_interval,
tb_log_name=tb_log_name,
reset_num_timesteps=reset_num_timesteps,
progress_bar=progress_bar,
)

callback.on_training_start(locals(), globals())

while self.num_timesteps < total_timesteps:
continue_training = self.collect_rollouts(self.env, callback, self.rollout_buffer, n_rollout_steps=self.n_steps)

if not continue_training:
break

iteration += 1
self._update_current_progress_remaining(self.num_timesteps, total_timesteps)

# Display training infos
if log_interval is not None and iteration % log_interval == 0:
time_elapsed = max((time.time_ns() - self.start_time) / 1e9, sys.float_info.epsilon)
fps = int((self.num_timesteps - self._num_timesteps_at_start) / time_elapsed)
self.logger.record("time/iterations", iteration, exclude="tensorboard")
if len(self.ep_info_buffer) > 0 and len(self.ep_info_buffer[0]) > 0:
self.logger.record("rollout/ep_rew_mean", safe_mean([ep_info["r"] for ep_info in self.ep_info_buffer]))
self.logger.record("rollout/ep_len_mean", safe_mean([ep_info["l"] for ep_info in self.ep_info_buffer]))
self.logger.record("time/fps", fps)
self.logger.record("time/time_elapsed", int(time_elapsed), exclude="tensorboard")
self.logger.record("time/total_timesteps", self.num_timesteps, exclude="tensorboard")
self.logger.dump(step=self.num_timesteps)

self.train()

callback.on_training_end()

return self
2 changes: 1 addition & 1 deletion sb3_contrib/version.txt
Original file line number Diff line number Diff line change
@@ -1 +1 @@
2.3.0a4
2.3.0a5
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@
packages=[package for package in find_packages() if package.startswith("sb3_contrib")],
package_data={"sb3_contrib": ["py.typed", "version.txt"]},
install_requires=[
"stable_baselines3>=2.3.0a4,<3.0",
"stable_baselines3>=2.3.0a5,<3.0",
],
description="Contrib package of Stable Baselines3, experimental code.",
author="Antonin Raffin",
Expand Down
Loading