Skip to content

Commit

Permalink
02
Browse files Browse the repository at this point in the history
  • Loading branch information
SmBito committed Sep 25, 2019
1 parent de5bc45 commit 5056e22
Showing 1 changed file with 208 additions and 2 deletions.
210 changes: 208 additions & 2 deletions 02.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,20 @@
"colab_type": "code",
"id": "bi4w0XmGFSfc"
},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\n",
"Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz\n",
"Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz\n",
"Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz\n",
"Processing...\n",
"Done!\n"
]
}
],
"source": [
"train = datasets.MNIST(\"\", train = True, download = True,\n",
" transform = transforms.Compose([transforms.ToTensor()]))\n",
Expand All @@ -61,12 +74,205 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "MUUp_xefGwlL"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[tensor([[[[0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" ...,\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.]]],\n",
"\n",
"\n",
" [[[0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" ...,\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.]]],\n",
"\n",
"\n",
" [[[0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" ...,\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.]]],\n",
"\n",
"\n",
" ...,\n",
"\n",
"\n",
" [[[0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" ...,\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.]]],\n",
"\n",
"\n",
" [[[0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" ...,\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.]]],\n",
"\n",
"\n",
" [[[0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" ...,\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.],\n",
" [0., 0., 0., ..., 0., 0., 0.]]]]), tensor([9, 1, 4, 9, 9, 3, 9, 5, 8, 6])]\n"
]
}
],
"source": [
"for data in trainset:\n",
" print(data)\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor(9)\n"
]
}
],
"source": [
"x, y = data[0][0], data[1][0]\n",
"print(y)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAOuklEQVR4nO3de4xc9XnG8efxsjaUGGLjQhYw15g2JigmXRkoDYVaSYFWXJSExkLUjdw6rYK4NEVFVC2oUlWoCoiEiMYUN04DJLTg4LYkQN0gQkKAhRpsYzCXOmC8taEOYsGNL+u3f+y4WsjOb4a52+/3I61m5rxz5rwMfvacnd8583NECMDeb1K3GwDQGYQdSIKwA0kQdiAJwg4ksU8nNzbZU2Jf7d/JTQKp/EzvaHts80S1psJu+0xJN0nqk/T3EXFt6fn7an+d5HnNbBJAwWOxomqt4cN4232SvirpLEmzJc23PbvR1wPQXs38zT5X0osR8XJEbJf0LUnntqYtAK3WTNgPk/TquMcbKsvexfYi20O2h3ZoWxObA9CMZsI+0YcAP3fubUQsjojBiBjs15QmNgegGc2EfYOkmeMeHy5pY3PtAGiXZsL+hKRZto+2PVnS5yQtb01bAFqt4aG3iNhp+2JJ92ts6G1JRKxpWWcAWqqpcfaIuE/SfS3qBUAbcboskARhB5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EAShB1IgrADSRB2IImmpmy2vV7SiKRRSTsjYrAVTQFovabCXnFGRLzRgtcB0EYcxgNJNBv2kPSA7SdtL5roCbYX2R6yPbRD25rcHIBGNXsYf2pEbLR9sKQHbT8XEQ+Pf0JELJa0WJIO8PRocnsAGtTUnj0iNlZuN0taJmluK5oC0HoNh932/ran7r4v6VOSVreqMQCt1cxh/CGSltne/Tp3RMT3WtIVgJZrOOwR8bKkj7WwFwBtxNAbkARhB5Ig7EAShB1IgrADSbTiQhgkFqeUB2TePO4XqtbemFc+ffov5v5rsX7h1OFifZJctbZL5ZM53xj932L9ot+9pFjve+ipYr0b2LMDSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKMs+/lfrrglGL9zbPeKdbnHvFKsf4PRy4p1ndpV7HejNqvXH1fVquv6X1TivXNl5XH4QceKpa7gj07kARhB5Ig7EAShB1IgrADSRB2IAnCDiTBOHsHTNp332J95LfK14S/9ts7i/Vv/vqtVWsnTn68uG6fq1/zXY/Ht/UV6w+MzKlaO36/DcV1f7J9RrF+ybTnivVmjEb5evf+736wbdtuF/bsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AE4+wt0Hf8LxXrL/55+droVZ+4uVifVON3cuna7GVvH1Jc96+ePatYn3LfgcX65LfK49FTv/3jqrXH9/1Icd2D/qN8foKaGGd/bFt/sX75dX9UrM/42qMNb7tbau7ZbS+xvdn26nHLptt+0PYLldtp7W0TQLPqOYz/uqQz37PsSkkrImKWpBWVxwB6WM2wR8TDkra8Z/G5kpZW7i+VdF6L+wLQYo1+QHdIRAxLUuX24GpPtL3I9pDtoR0qz+0FoH3a/ml8RCyOiMGIGOxX+YMqAO3TaNg32R6QpMrt5ta1BKAdGg37ckkLKvcXSLq3Ne0AaJea4+y275R0uqQZtjdIulrStZLusr1Q0iuSPtvOJnvdOf/0SLH++QPXN/X6a7aXr2efv/TyqrVjbit/7/uhrz7bUE/1mjRndtXayUtXFte9csYPmtr27SMDVWt3nfOJ4roz1u154+i11Ax7RMyvUprX4l4AtBGnywJJEHYgCcIOJEHYgSQIO5AEl7jW6bUrf7VqbeGBXymuOzxaPk34N759RbF+7BXlYaAj9KOqtfKgXW37DHyoWF93+dHF+rMXli/fLSvvi2oNSd6x8OyqNa8rD/vtjdizA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EASjLPXac451S8FLX2VsySdt3JhsX7cdeuK9dFiteynC04p1t88651i/U8+9u/F+ucP+LdivdZ7U1Lr656v+cMvFOv9PxxqeNt7I/bsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AE4+x1+tETv1y1NnrEA8V1H/2Vbxbra58oj0X/LMr/m0blqrUTJz9eXLfP1detT/v2FwvuX1SsH/dA+b8N78aeHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeSYJy9TrMu/XHV2kd1SXHdkwefL9ZPm1a+nn3hgeVplx/dVv139u//5DeL6w49XP38AUnSUVuL5TWnLSmvXzCya3uxPvP+hl8aE6i5Z7e9xPZm26vHLbvG9mu2V1Z+qn8bP4CeUM9h/NclnTnB8hsjYk7l577WtgWg1WqGPSIelrSlA70AaKNmPqC72PYzlcP8adWeZHuR7SHbQztUnvMMQPs0GvZbJB0raY6kYUnXV3tiRCyOiMGIGOzXlAY3B6BZDYU9IjZFxGhE7JJ0q6S5rW0LQKs1FHbbA+Meni9pdbXnAugNNcfZbd8p6XRJM2xvkHS1pNNtz5EUktZLKn+B916uNAYvSf9TY/1/GTihWF925LxivW9L9e9+H133UnHdD8/aVKxvuqF9p2KccVN5XvpDv1N93nm8fzX/T0bE/AkW39aGXgC0EafLAkkQdiAJwg4kQdiBJAg7kASXuPaAncP/XX5CjXppSue+2ccV173gnoeK9QunDhfr/e4r1j/zUvVLbA//2qriuo1P9oyJsGcHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQYZ9/LnXRn+asG5k99rVivNdZ919vTi/Wtn6m+P9k1MlLj1dFK7NmBJAg7kARhB5Ig7EAShB1IgrADSRB2IAnG2fcA7p9crD//5TlVa8sOurnWqxerr4+Wp+y6+YrfKdb32/R4je2jU9izA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EASjLPvAUbO/3ix/tw5XylUy+PotZxxR3la5WPufbSp10fn1Nyz255p+/u219peY/vSyvLpth+0/ULldlr72wXQqHoO43dK+lJEfETSyZK+aHu2pCslrYiIWZJWVB4D6FE1wx4RwxHxVOX+iKS1kg6TdK6kpZWnLZV0XruaBNC89/UBne2jJJ0o6TFJh0TEsDT2C0HSwVXWWWR7yPbQDpXPswbQPnWH3fYHJN0t6bKIeKve9SJicUQMRsRgv6Y00iOAFqgr7Lb7NRb02yPinsriTbYHKvUBSZvb0yKAVqg59Gbbkm6TtDYibhhXWi5pgaRrK7f3tqXDBOLU6peoStJXr7upxis0frrECT9YWKx/+C+fLtaZVnnPUc84+6mSLpK0yvbKyrKrNBbyu2wvlPSKpM+2p0UArVAz7BHxiKqfmTGvte0AaBdOlwWSIOxAEoQdSIKwA0kQdiAJLnHtgL4PHlisb736zWL9hMn9xfouRdXa8nfKFyMe+9c7yq+9dWuxjj0He3YgCcIOJEHYgSQIO5AEYQeSIOxAEoQdSIJx9g5Ye/2sYv25428p1nfV+J28q3BV+d8t/HRx3UlP/2exjr0He3YgCcIOJEHYgSQIO5AEYQeSIOxAEoQdSIJx9laY1FcsH3XE623d/CdXX1C1tt8Pn2nrtrHnYM8OJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0nUMz/7TEnfkPQhjU3HvTgibrJ9jaQ/kLR7EPmqiLivXY32sn1mHlqsL5/9z029/ne3Ti3W+26cUb2467+a2jb2HvWcVLNT0pci4inbUyU9afvBSu3GiPjb9rUHoFXqmZ99WNJw5f6I7bWSDmt3YwBa6339zW77KEknSnqssuhi28/YXmJ7wnmGbC+yPWR7aIe2NdUsgMbVHXbbH5B0t6TLIuItSbdIOlbSHI3t+a+faL2IWBwRgxEx2K8pLWgZQCPqCrvtfo0F/faIuEeSImJTRIxGxC5Jt0qa2742ATSrZthtW9JtktZGxA3jlg+Me9r5kla3vj0ArVLPp/GnSrpI0irbKyvLrpI03/YcSSFpvaQvtKXDPcDoxk3F+qdfOKdYv3vW8mL9j7+zoFg/9nuPFuuAVN+n8Y9I8gSllGPqwJ6KM+iAJAg7kARhB5Ig7EAShB1IgrADSTgiOraxAzw9TvK8jm0PyOaxWKG3YstEQ+Xs2YEsCDuQBGEHkiDsQBKEHUiCsANJEHYgiY6Os9t+XdJPxi2aIemNjjXw/vRqb73al0RvjWplb0dGxC9OVOho2H9u4/ZQRAx2rYGCXu2tV/uS6K1RneqNw3ggCcIOJNHtsC/u8vZLerW3Xu1LordGdaS3rv7NDqBzur1nB9AhhB1Ioitht32m7edtv2j7ym70UI3t9bZX2V5pe6jLvSyxvdn26nHLptt+0PYLldsJ59jrUm/X2H6t8t6ttH12l3qbafv7ttfaXmP70sryrr53hb468r51/G92232S1kn6pKQNkp6QND8inu1oI1XYXi9pMCK6fgKG7dMkvS3pGxHx0cqyv5G0JSKurfyinBYRf9ojvV0j6e1uT+Ndma1oYPw045LOk/R76uJ7V+jrAnXgfevGnn2upBcj4uWI2C7pW5LO7UIfPS8iHpa05T2Lz5W0tHJ/qcb+sXRcld56QkQMR8RTlfsjknZPM97V967QV0d0I+yHSXp13OMN6q353kPSA7aftL2o281M4JCIGJbG/vFIOrjL/bxXzWm8O+k904z3zHvXyPTnzepG2Cf6fqxeGv87NSI+LuksSV+sHK6iPnVN490pE0wz3hManf68Wd0I+wZJM8c9PlzSxi70MaGI2Fi53SxpmXpvKupNu2fQrdxu7nI//6+XpvGeaJpx9cB7183pz7sR9ickzbJ9tO3Jkj4nqTyNaYfY3r/ywYls7y/pU+q9qaiXS9o9resCSfd2sZd36ZVpvKtNM64uv3ddn/48Ijr+I+lsjX0i/5KkP+tGD1X6OkbS05WfNd3uTdKdGjus26GxI6KFkg6StELSC5Xb6T3U2z9KWiXpGY0Fa6BLvf2axv40fEbSysrP2d1+7wp9deR943RZIAnOoAOSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJP4PK79NUHwNbBkAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.imshow(data[0][0].view(28,28))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch.Size([1, 28, 28])\n"
]
}
],
"source": [
"print(data[0][0].shape)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{0: 5923, 1: 6742, 2: 5958, 3: 6131, 4: 5842, 5: 5421, 6: 5918, 7: 6265, 8: 5851, 9: 5949}\n"
]
}
],
"source": [
"total = 0\n",
"counter_dict = {0:0, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0}\n",
"\n",
"for data in trainset:\n",
" Xs, ys = data\n",
" for y in ys:\n",
" counter_dict[int(y)] += 1\n",
" total+=1\n",
"\n",
"print(counter_dict)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0: 9.871666666666666\n",
"1: 11.236666666666666\n",
"2: 9.93\n",
"3: 10.218333333333334\n",
"4: 9.736666666666666\n",
"5: 9.035\n",
"6: 9.863333333333333\n",
"7: 10.441666666666666\n",
"8: 9.751666666666667\n",
"9: 9.915000000000001\n"
]
}
],
"source": [
"for i in counter_dict:\n",
" print(f\"{i}: {counter_dict[i]/total*100}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
Expand Down

0 comments on commit 5056e22

Please sign in to comment.