Command line interface (CLI) for directly manipulating loom files
-
Python 3
-
Loompy
-
Numpy
-
Pandas
git clone https://github.com/SeppeDeWinter/Loompy_scripts.git
Calculate average gene expression over defined set(s) of column attributes.
python Loom_scripts.py average_expression \
-i <INPUT> \
-o <OUTPUT> \
-ca <COLUMN_ATTRIBUTES \
-r <RA_USE>
[COLUMN_ATTRIBUTES ...]> \
[-ra <ROW_ATTRIBUTE>] \
[-g <GENES>] \
[-b <BATCH_SIZE>] \
[-ly ,LAYERS [LAYERS ...]>]
[-h]
Arguments:
-i <INPUT>, --input <INPUT>
<Required> Path to loom file.
-o <OUTPUT>, --output <OUTPUT>
<Required> Path to write output csv file containing average gene expression.
-ca <COLUMN_ATTRIBUTES [COLUMN_ATTRIBUTES ...]>, --column_attributes <COLUMN_ATTRIBUTES [COLUMN_ATTRIBUTES ...]>
<Required> Column attribute or combination of column attributes to calculate average gene expression on.
For example -ca ClusterID to calculate average gene expression across all clusters.
For example -ca ClusterID TimePoint to calculate average gene expression across all combinations of ClusterIDs and timepoints (e.g. cluster_1 timepoint_1, cluster_1 timepoint_2, cluster_2 timepoint_1 and cluster_2 timepoint_2 when the loom files has two ClusterIDs and two TimePoints).
-r <RA_USE>, --ra_use <RA_USE>
<Required> which row attribute is used to calculate average exoression on (e.g. gene).
-ra <ROW_ATTRIBUTE>, --row_attribute <ROW_ATTRIBUTE>
<Optional> Boolean row attribute (in loom file) specifying on which genes average expression should be calculated (e.g> selected), leave empty for all genes.
-g <GENES>, --genes <GENES>
<Optional> new line seperated file containing gene names from which the average expression has to be calculated, leave empty for all genes
-b <BATCH_SIZE>, --batch_size <BATCH_SIZE>
<Optional> batch size for scanning through loom file, default is 512
-ly <LAYERS [LAYERS ...]>, --layers <LAYERS [LAYERS ...]>
<Optional> Layers to calculate average expression on (e.g. spliced)
-h, --help show help message.
subsample loom file down to a random sample of cells (without replacement)
python Loom_scripts.py subsample_cells
-i <INPUT> \
-o <OUTPUT> \
-n <NUM_CELLS>
Arguments:
-i <INPUT>, --input <INPUT>
<Required> Path to loom file, make sure loom file is writable
-o <OUTPUT>, --output <OUTPUT>
<Required> Path to write output loom file
-n <NUM_CELLS>, --num_cells <NUM_CELLS>
<Required> Number of cells to sample
-h, --help show this help message
Map row attribute to different name (e.g. map gene names to orthologous gene names).
python Loom_scripts.py map_ra
-i <INPUT>
-ra <ROW_ATTR>
-m <MAPPING>
-n <NEW_RA_NAME>
[-h]
Arguments:
-i INPUT, --input INPUT
<Required> Path to loom file (Loom file shoud be
writable)
-ra ROW_ATTR, --row_attr ROW_ATTR
<Required> Row attribute to map from (e.g. Gene)
-m MAPPING, --mapping MAPPING
<Required> Path to csv file containing mapping (A 2-column data frame defining variable name mapping. First column is source variable name and second column is target variable name
-n NEW_RA_NAME, --new_ra_name NEW_RA_NAME
<Required> New name of row attribute for the new mapping.
-h, --help show this help message.