Skip to content

Universal add-on for operator overloading AD tools that enables the differentiation of OpenMP parallel codes.

License

LGPL-3.0, GPL-3.0 licenses found

Licenses found

LGPL-3.0
COPYING.LESSER
GPL-3.0
COPYING
Notifications You must be signed in to change notification settings

SciCompKL/OpDiLib

Repository files navigation

OpDiLib

OpDiLib (Open Multiprocessing Differentiation Library) is a universal add-on for reverse mode operator overloading AD tools that enables the differentiation of OpenMP parallel code.

It makes use of modern OpenMP features around OMPT to deduce a parallel reverse pass without any additional modifications of the parallel source code. Additionally, we provide a second mode of operation that works via replacement macros for OpenMP's directives and clauses as well as replacements for OpenMP's runtime functions. This mode of operation can also be used with compilers that do not support OMPT. There are no restrictions on data access patterns so that a first differentiated parallel code is obtained with little to no effort. As a next step, the parallel performance of the reverse pass can be optimized with various tools. One important aspect is disabling atomic updates on adjoint variables where appropriate. If the underlying AD tool is capable of differentiating MPI, for example via the add-on MeDiPack, OpDiLib can also be employed for a differentiation of OpenMP-MPI hybrid parallel codes.

The Scientific Computing Group at the University of Kaiserslautern-Landau (RPTU) develops OpDiLib and will enhance and extend OpDiLib in the future. There is a newsletter available at opdi-info@scicomp.uni-kl.de. If you want to contact us, please write a mail to opdi@scicomp.uni-kl.de.

OpenMP Support

OpDiLib supports all directives, clauses and runtime functions of the OpenMP 2.5 specification with the exception of

  • atomic directives,
  • flush directives.

Usage

If you have a code that is differentiated with a serial AD tool and parallelize it using OpenMP, the procedure of obtaining an efficient parallel differentiated code with OpDiLib is as follows.

  1. Couple OpDiLib with your AD tool. This step can be skipped if you use an AD tool that already has OpDiLib bindings, for example CoDiPack, which has OpDiLib support since version 2.1.
  2. Obtain a first parallel differentiated version of your code. If your compiler supports OMPT, it suffices to add a few lines of code for the initialization and finalization of OpDiLib. Otherwise, you have to use OpDiLib's macro backend, which involves rewriting your OpenMP constructs according to OpDiLib's macro interface. Both approaches are demonstrated in the minimal example below.
  3. Optimize the performance of the parallel reverse pass. Check your parallel forward code for parts that do not involve shared reading. Use OpDiLib's adjoint access control tools to disable atomic adjoints for these parts. You may also revise your data access patterns to eliminate additional instances of shared reading.

Publication

For further details about OpDiLib's design, features and modes of operation, please refer to our publication Event-Based Automatic Differentiation of OpenMP with OpDiLib. If you use OpDiLib in one of your applications and write a paper, please cite us!

@article{BluehdornSG2023,
  author = {Bl\"{u}hdorn, Johannes and Sagebaum, Max and Gauger, Nicolas R.},
  title = {{Event-Based Automatic Differentiation of OpenMP with OpDiLib}},
  year = {2023},
  issue_date = {March 2023},
  publisher = {Association for Computing Machinery},
  address = {New York, NY, USA},
  volume = {49},
  number = {1},
  url = {https://doi.org/10.1145/3570159},
  doi = {10.1145/3570159},
  journal = {ACM Trans. Math. Softw.},
  month = {mar},
  articleno = {3},
  numpages = {31}
}

Minimal Example

The following minimal example assumes that CoDiPack is used as the underlying AD tool. You need CoDiPack version 2.1 or newer. For additional examples, please refer to OpDiLib's test suite.

OMPT Backend

#include <codi.hpp>
#include <iostream>

#include <opdi/backend/ompt/omptBackend.hpp>
#include <opdi.hpp>

using Real = codi::RealReverseIndexOpenMP;  // use a suitable CoDiPack type
using Tape = typename Real::Tape;

int main(int nargs, char** args) {

  // initialize OpDiLib

  if (omp_get_num_threads() /* trigger OMPT initialization */ && opdi::backend == nullptr) {
    std::cout << "Could not initialize OMPT backend. Please check OMPT support." << std::endl;
    exit(1);
  }

  opdi::logic = new opdi::OmpLogic;
  opdi::logic->init();
  opdi::tool = new CoDiOpDiLibTool<Real>;
  opdi::tool->init();

  // usual AD workflow

  Real x = 4.0;

  Tape& tape = Real::getTape();
  tape.setActive();
  tape.registerInput(x);

  // parallel computation

  size_t constexpr N = 10000000;

  Real y = 0.0;

  #pragma omp parallel
  {
    Real localSum = 0.0;

    #pragma omp for
    for (size_t i = 0; i < N; ++i)
    {
      localSum += sin(x * i);
    }

    #pragma omp critical
    {
      y += localSum;
    }
  }

  // usual AD workflow

  tape.registerOutput(y);
  tape.setPassive();
  y.setGradient(1.0);

  opdi::logic->prepareEvaluate();  // prepare OpDiLib for evaluation

  tape.evaluate();

  std::cout << "f(" << x << ") = " << y << std::endl;
  std::cout << "df/dx(" << x << ") = " << x.getGradient() << std::endl;

  // finalize OpDiLib

  opdi::tool->finalize();
  opdi::logic->finalize();
  opdi::backend->finalize();
  delete opdi::tool;
  delete opdi::logic;

  return 0;
}

// don't forget to include the OpDiLib source file
#include "opdi.cpp"

The following command can be used to compile the code.

clang++  -I<path to codi>/include -I<path to opdi>/include -DCODI_EnableOpenMP -DCODI_EnableOpDiLib --std=c++11 -fopenmp -o omptexample omptexample.cpp

Macro Backend

#include <codi.hpp>
#include <iostream>

#include <opdi/backend/macro/macroBackend.hpp>
#include <opdi.hpp>

using Real = codi::RealReverseIndexOpenMP;  // use a suitable CoDiPack type
using Tape = typename Real::Tape;

int main(int nargs, char** args) {

  // initialize OpDiLib

  opdi::backend = new opdi::MacroBackend();
  opdi::backend->init();
  opdi::logic = new opdi::OmpLogic;
  opdi::logic->init();
  opdi::tool = new CoDiOpDiLibTool<Real>;
  opdi::tool->init();

  // usual AD workflow

  Real x = 4.0;

  Tape& tape = Real::getTape();
  tape.setActive();
  tape.registerInput(x);

  // parallel computation

  size_t constexpr N = 10000000;

  Real y = 0.0;

  OPDI_PARALLEL()
  {
    Real localSum = 0.0;

    OPDI_FOR()
    for (size_t i = 0; i < N; ++i)
    {
      localSum += sin(x * i);
    }
    OPDI_END_FOR

    OPDI_CRITICAL()
    {
      y += localSum;
    }
    OPDI_END_CRITICAL
  }
  OPDI_END_PARALLEL

  // usual AD workflow

  tape.registerOutput(y);
  tape.setPassive();
  y.setGradient(1.0);

  opdi::logic->prepareEvaluate();  // prepare OpDiLib for evaluation

  tape.evaluate();

  std::cout << "f(" << x << ") = " << y << std::endl;
  std::cout << "df/dx(" << x << ") = " << x.getGradient() << std::endl;

  // finalize OpDiLib

  opdi::tool->finalize();
  opdi::logic->finalize();
  opdi::backend->finalize();
  delete opdi::tool;
  delete opdi::logic;
  delete opdi::backend;

  return 0;
}

// don't forget to include the OpDiLib source file
#include "opdi.cpp"

The following command can be used to compile the code.

clang++  -I<path to codi>/include -I<path to opdi>/include -DCODI_EnableOpenMP -DCODI_EnableOpDiLib --std=c++11 -fopenmp -o macroexample macroexample.cpp

About

Universal add-on for operator overloading AD tools that enables the differentiation of OpenMP parallel codes.

Resources

License

LGPL-3.0, GPL-3.0 licenses found

Licenses found

LGPL-3.0
COPYING.LESSER
GPL-3.0
COPYING

Stars

Watchers

Forks

Packages

No packages published