Welcome to the official repository for NOVA, a deep learning framework designed for high-throughput organellar phenotyping of human neurons using AI-driven methodologies. This repository contains the code, data, and instructions needed to reproduce the results described in our paper: Organellomics: AI-driven Deep Organellar Phenotyping of Human Neurons.
NOVA is an AI-driven deep learning approach for analyzing and phenotyping organelles in human neurons at scale. The model leverages state-of-the-art neural networks to identify and classify various organelles in microscopy images, enabling new insights into cellular biology and potential implications for neurodegenerative diseases.
To get started with Organellomics, clone the repository and install the required dependencies.
git clone https://github.com/Sagykri/NOVA.git
cd NOVA
conda env create --name nova --file environment_nova.yml
Next, you need to set two environment variables:
export NOVA_HOME=*path to NOVAs root folder*
export NOVA_DATA_HOME=*path to the data folder*
The model (.pth) file can be downloaded from here, or via HuggingFace
The images are stored in an Amazon S3 bucket named "organellomics".
To download them to your local machine you may use the download_images_from_S3.py
script as follows:
python download_images_from_S3.py path_to_local_folder
The list of files can be seen here.
python $NOVA_HOME/runnables/preprocessing *RELATIVE_PATH_TO_DATASET_CONFIG_CLASS*
For example:
python $NOVA_HOME/runnables/preprocessing /manuscript/dataset_config/OpenCellTrainDatasetConfig
For WEXAC:
$NOVA_HOME/runnables/run.sh $NOVA_HOME/runnables/preprocessing -g -m 20000 -b 10 -j preprocess -a ./manuscript/dataset_config/OpenCellTrainDatasetConfig
python $NOVA_HOME/runnables/train *RELATIVE_PATH_TO_MODEL_CONFIG_CLASS* *RELATIVE_PATH_TO_TRAINER_CONFIG_CLASS* *RELATIVE_PATH_TO_DATASET_CONFIG_CLASS*
For example:
python $NOVA_HOME/runnables/train ./manuscript/model_config/ClassificationModelConfig /manuscript/trainer_config/ClassificationTrainerConfig /manuscript/dataset_config/OpenCellTrainDatasetConfig
For WEXAC:
$NOVA_HOME/runnables/run.sh $NOVA_HOME/runnables/train -g -m 40000 -b 44 -j train -a ./manuscript/model_config/ClassificationModelConfig ./manuscript/trainer_config/ClassificationTrainerConfig ./manuscript/dataset_config/OpenCellTrainDatasetConfig
Once you have a trained model, you may proceed to generate embeddings for further analysis and plots creation. To generate embeddings you need to run the following:
python $NOVA_HOME/runnables/generate_embeddings *ABSOLUTE_PATH_TO_MODEL_FOLDER* *RELATIVE_PATH_TO_EMBEDDINGS_CONFIG_CLASS*
For example:
python $NOVA_HOME/runnables/generate_embeddings $NOVA_HOME/outputs/vit_models/finetuned_model ./manuscript/embeddings_config/EmbeddingsDatasetConfig
On WEXAC:
$NOVA_HOME/runnables/run.sh $NOVA_HOME/runnables/generate_embeddings -g -m 20000 -b 10 -a $NOVA_HOME/outputs/vit_models/finetuned_model ./manuscript/embeddings_config/AlyssaEmbeddingsDatasetConfig -q short-gpu -j generate_embeddings
Once you have saved embeddngs, you may generate UMAPs for them following this command:
python $NOVA_HOME/runnables/generate_umaps_and_plot *ABSOLUTE_PATH_TO_MODEL_FOLDER* *RELATIVE_PATH_TO_FIGURES_CONFIG_CLASS* *RELATIVE_PATH_TO_PLOT_CONFIG_CLASS*
For example:
python $NOVA_HOME/runnables/generate_umaps_and_plot $NOVA_HOME/vit_models/finetuned_model ./manuscript/manuscript_figures_data_config/NeuronsUMAP0StressB6FigureConfig ./manuscript/manuscript_plot_config/UMAP0StressPlotConfig
On WEXAC:
$NOVA_HOME/runnables/run.sh $NOVA_HOME/runnables/generate_umaps_and_plot -m 5000 -a $NOVA_HOME/vit_models/finetuned_model ./manuscript/manuscript_figures_data_config/NeuronsUMAP0StressB6FigureConfig ./manuscript/manuscript_plot_config/UMAP0StressPlotConfig -q short -j generate_umap
For generating distances plots you should first calculate the distances.
For calculating distance you should run the following:
python $NOVA_HOME/runnables/generate_distances *ABSOLUTE_PATH_TO_MODEL_FOLDER* *RELATIVE_PATH_TO_DISTANCE_CONFIG_CLASS*
For example:
python $NOVA_HOME/runnables/generate_distances $NOVA_HOME/outputs/vit_models/finetuned_model ./manuscript/distances_config/DistanceConfig
On WEXAC:
$NOVA_HOME/bash_commands/run_py.sh $NOVA_HOME/src/runables/generate_distances -a $NOVA_HOME/outputs/vit_models/finetuned_model ./manuscript/distances_config/NeuronsDistanceConfig -j dist_neurons
Once you have the distances calculated, you may plot them with the following plot types:
python $NOVA_HOME/runnables/plot_distances_boxplots *ABSOLUTE_PATH_TO_MODEL_FOLDER* *RELATIVE_PATH_TO_FIGURES_CONFIG_CLASS* *RELATIVE_PATH_TO_PLOT_CONFIG_CLASS*
For example:
python $NOVA_HOME/runnables/plot_distances_boxplots $NOVA_HOME/outputs/vit_models/finetuned_model ./manuscript/manuscript_figures_data_config/DistancesFigureConfig ./manuscript/manuscript_plot_config/DistancesPlotConfig
For WEXAC:
$NOVA_HOME/runnables/run.sh $NOVA_HOME/runnables/plot_distances_boxplots -m 1000 -a $NOVA_HOME/outputs/vit_models/finetuned_model ./manuscript/manuscript_figures_data_config/DistancesFigureConfig ./manuscript//manuscript_plot_config/DistancesPlotConfig -q short -j boxplots
python $NOVA_HOME/runnables/plot_distances_bubble *ABSOLUTE_PATH_TO_MODEL_FOLDER* *RELATIVE_PATH_TO_FIGURES_CONFIG_CLASS* *RELATIVE_PATH_TO_PLOT_CONFIG_CLASS*
For example:
python $NOVA_HOME/runnables/plot_distances_bubble $NOVA_HOME/outputs/vit_models/finetuned_model ./manuscript/manuscript_figures_data_config/DistancesFigureConfig ./manuscript/manuscript_plot_config/DistancesPlotConfig
For WEXAC:
$NOVA_HOME/runnables/run.sh $NOVA_HOME/runnables/plot_distances_bubble -m 1000 -a $NOVA_HOME/outputs/vit_models/finetuned_model ./manuscript/manuscript_figures_data_config/DistancesFigureConfig ./manuscript/manuscript_plot_config/DistancesPlotConfig -q short -j boxplots
Your data folder should be organized as follows:
- The first batch’s name and its number (for example batch1)
- The name of the first cell line (for example, WT, TDP43, ...)
- panelA
- The name of the first condition (for example, Untreated, stress, ..)
- rep1
- The name of the first marker (for example DAPI, G3BP1, ..)
- The name of the first site with some site index (preferably ‘_s1’) and a ‘.tiff’ extension
- The name of the second site with some site index (preferably ‘_s2’) and a ‘.tiff’ extension ...
- The name of the second marker
- …
- rep2
- …
- The name of the second condition
- …
- panelB
- panelC
- …
- The name of the second cell line
- …
- The second batch’s name and its number (for example batch2)
- …
For example:
- batch1
- WT
- panelA
- Untreated
- rep1
- DAPI
- filename_s1.tiff
- filename_s2.tiff
- G3BP1
- filename_s1.tiff
- filename_s2.tiff
- ...
- rep2
- DAPI
- filename_s101.tiff
- filename_s102.tiff
- G3BP1
- filename_s101.tiff
- filename_s102.tiff
- ...
- stress
- rep1
- DAPI
- filename_s201.tiff
- filename_s202.tiff
- ...
- ...
- panelB
- Untreated
- rep1
- DAPI
- filename_s401.tiff
- filename_s402.tiff
- ...
- ...
- TDP43
- panelA
- Untreated
- rep1
- DAPI
- filename_s601.tiff
- filename_s602.tiff
- ...
You may use **CamelCase** instead.
# The seed
SEED:int
# The path to the root folder of the project
HOME_FOLDER:str
# The path to the root input folder
HOME_DATA_FOLDER:str
# The path where to save the configuration files that have been used
CONFIGS_USED_FOLDER:str
# The path to the root logs folder
LOGS_FOLDER:str
# The path to the raw data folder
RAW_FOLDER_ROOT:str
# The path to the output (processed) folder
PROCESSED_FOLDER_ROOT:str
# An array of all the folders to process
INPUT_FOLDERS:List[str]
# An array to where to save the processed files
PROCESSED_FOLDERS:List[str]
# The expected image shape
EXPECTED_IMAGE_SHAPE:Tuple[int, int]
# The tile shape when cropping the image into tiles
TILE_INTERMEDIATE_SHAPE:Tuple[int,int]
# The final tile shape after resizing from TILE_INTERMEDIATE_SHAPE
TILE_SHAPE:Tuple[int, int]
# Maximum allowed nuclei in a tile
MAX_NUM_NUCLEI:int
# Num of workers to use when running the preprocessing in parallel
NUM_WORKERS:int
# Settings for cellpose
# For more details please see: https://cellpose.readthedocs.io/en/latest/settings.html
CELLPOSE = {
'NUCLEUS_DIAMETER': int,
'CELLPROB_THRESHOLD': int,
'FLOW_THRESHOLD': float
}
# The lower and upper bounds *percentiles* to shrink the image intenstiy into
# Requirement: 0<=lower_bound<=upper_bound<=100
# For more details see: https://scikit-image.org/docs/stable/api/skimage.exposure.html#skimage.exposure.rescale_intensity
RESCALE_INTENSITY = {
'LOWER_BOUND': float,
'UPPER_BOUND': float
}
# The path to the file holding the focus boundries for each marker
MARKERS_FOCUS_BOUNDRIES_PATH:Union[None,str]
# Which markers to include
MARKERS:Union[None, List[List]]
# Cell lines to include
CELL_LINES:Union[None, List[List]]
# Conditions to include
CONDITIONS:Union[None, List[List]]
# Reps to include
REPS:Union[None, List[List]]
# The path to the Preprocessor class (the path to the py file, then / and then the name of the class)
# ex: os.path.join("src", "preprocessing", "preprocessor_spd", "SPDPreprocessor")
PREPROCESSOR_CLASS_PATH:str
# The path to the root of the processed folder
PROCESSED_FOLDER_ROOT:str
# The path to the data folders
INPUT_FOLDERS:List[str]
# Which markers to include
MARKERS:List[str]
# Which markers to exclude
MARKERS_TO_EXCLUDE:List[str]
# Cell lines to include
CELL_LINES:List[str]
# Conditions to include
CONDITIONS:List[str]
# Reps to include
REPS:List[str]
# Should split the data to train,val,test?
SPLIT_DATA:bool
# The percentage of the data that goes to the training set
TRAIN_PCT:float
# Should shuffle the data within each batch collected?
##Must be true whenever using SPLIT_DATA=True otherwise train,val,test set won't be the same as when shuffle was true
SHUFFLE:bool
# Should add the cell line to the label?
ADD_LINE_TO_LABEL:bool
# Should add condition to the label?
ADD_CONDITION_TO_LABEL:bool
# Should add the batch to the label?
ADD_BATCH_TO_LABEL:bool
# Should add the rep to the label?
ADD_REP_TO_LABEL:bool
# Number of channels per image
NUM_CHANNELS:int
# The size of each image (width,height)
IMAGE_SIZE:Tuple[int, int]
# The starting learning rate
LR:float
# The final learning rate at the end of the schedule
MIN_LR:float
# Number of epochs
MAX_EPOCHS:int
# Number of epochs to warmup the learning rate
WARMUP_EPOCHS:int
# The starting weight decay value
WEIGHT_DECAY:float
# The final weight decay value at the end of the schedule
WEIGHT_DECAY_END:float
# The batchsize (how many files to load per batch)
BATCH_SIZE:int
# Number of works to run during the data loading
NUM_WORKERS:int
# Number of straight epochs without improvement to wait before activating eary stopping
EARLY_STOPPING_PATIENCE:int
# The path to the trainer class (the path to the py file, then / and then the name of the class)
# ex: os.path.join("src", "common", "lib", "models", "trainers", "trainer_classification", "TrainerClassification")
TRAINER_CLASS_PATH:str
# A textual description for the model (optional, default to the trainer class name)
DESCRIPTION:str
# Whether to drop the last batch if its partial of the expected batch size
DROP_LAST_BATCH:bool
# The path to the aumentation to apply on each sample in the data (the path to the py file, then / and then the name of the class)
# ex: os.path.join("src", "models", "utils", "augmentations", "RotationsAndFlipsAugmentation")
DATA_AUGMENTATION_CLASS_PATH:str
# The version of the vit (options: 'tiny'|'small'|'base')
VIT_VERSION:str
# The image size (weight==height) the model would expect
IMAGE_SIZE:int
# The patch size for the model
PATCH_SIZE:int
# Num of channels the model would expect in the input sampels
NUM_CHANNELS:int
# The size of the model's output
OUTPUT_DIM:int
# The path to the data folders
INPUT_FOLDERS:List[str]
# The name for the experiment
EXPERIMENT_TYPE:str
# Which dataset type to load (options: 'trainset', 'valset', 'testset')
SETS:List[str]
# The path to the data folders
INPUT_FOLDERS:List[str]
# Decide if to show ARI metric on the UMAP
SHOW_ARI:bool
# Function to edit labels; only used when SHOW_ARI==True and if the labels used for the ARI calculation, needs to be different than the shown labels.
# Example of usage: self.ARI_LABELS_FUNC = MapLabelsFunction.CELL_LINES.name
ARI_LABELS_FUNC:str
# Which cell line + condition is used as baseline; used for distances figures
BASELINE_CELL_LINE_CONDITION:str
# Which other cell lines + conditions are being compared to the baseline; used for distances figures
CELL_LINES_CONDITIONS:List[str]
# Set the size of the dots
SIZE:int
# Set the alpha of the dots (0=max opacity, 1=no opacity)
ALPHA:float
# Whether to mix-up different groups' plotting order in UMAP; used when groups are plotted on top of each other.
MIX_GROUPS:bool
# Set the color mapping dictionary (name: {alias:alias, color:color})
COLOR_MAPPINGS:Dict[str, Dict[str,str]]
# Set the alias mapping key
MAPPINGS_ALIAS_KEY:str
# Set the color mapping key
MAPPINGS_COLOR_KEY:str
# Wether to show the baseline's ARI boxplot; used for marker ranking plots
SHOW_BASELINE:bool
# Define marker order for bubble plot
ORDERED_MARKERS:List[str]
# Define cell line order for bubble plot
ORDERED_CELL_LINES:List[str]
# Define a range for the y-axis break (used for marker ranking graph, if y-axis cut is needed)
YAXIS_CUT_RANGES: dict[str, Tuple[float, float]] = {
'UPPER_GRAPH': None,
'LOWER_GRAPH': None
}
For creating a new configuration you should create (or use an existsing) python file, set there a class with a representative name and make it inherit from the relevant class (BaseConfig/PreprocessingConfig/ModelConfig etc..).
For example:
New dataset configuration:
class OpenCellDatasetConfig(DatasetConfig):
def __init__(self):
super().__init__()
self.INPUT_FOLDERS = [os.path.join(self.PROCESSED_FOLDER_ROOT, "OpenCell")]
self.SPLIT_DATA = True
self.MARKERS_TO_EXCLUDE = ['DAPI']
######################
self.CELL_LINES = ['WT']
self.CONDITIONS = ['Untreated']
######################
New model configuration:
class ClassificationModelConfig(ModelConfig):
"""Configuration for the classification model
"""
def __init__(self):
super().__init__()
self.OUTPUT_DIM = 1311