Due to the modification of the LLM model in the hybrid model, we provide separate workflow for the baseline model and the hybrid model.
Before you begin, ensure you have accounts set up on:
-
Clone the repository:
git clone git@github.com:Rose-STL-Lab/Multimodal_Forecasting.git cd Multimodal_Forecasting
-
Install dependencies:
conda env create -f environment.yml conda activate textforecast poetry install
-
Configure wandb and Hugging Face credentials: Follow the documentation for each platform to set up your API keys and authentication.
For the Hybrid model, we provide the raw dataset in data/medical
and data/climate_2014_2023_final.csv
.
To run the main script:
For Hybrid model
# run mlp pretraining stage
python -m src.hybrid -i 1 -o 1 -ms --config='config/hybrid/climate.yaml'
# evaluate mlp pretraining stage
python -m src.hybrid -i 1 -o 1 -ms -t --config='config/hybrid/climate.yaml'
# run end-to-end finetuning stage
python -m src.hybrid -i 1 -o 1 -hs --config='config/hybrid/climate.yaml'
# make inference on end-to-end finetuning stage
python -m src.hybrid -i 1 -o 1 -hs -t --config='config/climate.yaml'
# evaluate end-to-end finetuning stage
python -m src.evaluate -i 1 -o 1 -hs --config='config/hybrid/climate.yaml'
Upload your dataset to Hugging Face. Example: https://huggingface.co/datasets/Howard881010/climate-1day
We use Axolotl for fine-tuning our models. Configuration files are located in config/baseline/finetune/
.
Since we will have four different cases (text2text, textTime2textTime, textTime2text, textTime2time), so we create a new huggingface dataset to do this. For example,
- Input: (input_text + instruction 1)
- Output: pred_output_case1
- Ground Truth: output_text
Those columns will be used to generate, save, and evaluate the result for text2text case.
Example dataset: https://huggingface.co/datasets/Howard881010/climate-1day-finetuned
Run inference using either the fine-tuned model or a pre-trained model. Results will be saved on Hugging Face, and evaluations will be logged to wandb.
To run the main script:
For fine-tuned model:
python baseline_model/multimodal.py -i 1 -o 1 --config="config/baseline/climate.yml"
For pre-trained model and zeroshot case:
python baseline_model/multimodal_zeroshot.py -i 1 -o 1 --config="config/baseline/climate.yml"
For pre-trained model and in-context case:
python baseline_model/multimodal_inContext.py -i 1 -o 1 --config="config/baseline/climate.yml"
For nlinear model:
python baseline_model/nlinear.py -i 1 -o 1 --config="config/baseline/climate.yml"
For nlinear model with text embedding:
python baseline_model/nlinear_textEmbedding.py -i 1 -o 1 --config="config/baseline/climate.yml"
Parameters:
-i
: Input parameter-o
: Output parameter--config
: Path to the configuration file
Modify the config/baseline/climate.yml
file to adjust model parameters, data paths, and other settings.
- Model outputs and datasets will be saved to your Hugging Face account.
- Evaluation metrics and experiment tracking will be available on your wandb dashboard.
[Include guidelines for contributing to the project, if applicable]
[Specify the license under which this project is released]
[Your contact information or how to reach the project maintainers]