-
Notifications
You must be signed in to change notification settings - Fork 0
ReprodSuplem/RTSS_SUMO
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
############################################################# Note that, this version is for the reproducibility of our preprint, not for that of the newest submission. ############################################################# This is an instruction for reproducing the experiments described in our preprint. A video demonstration of our simulation is available at https://youtu.be/f2FpVc17SBA. ===== Part A ===== What the experimental environments we need? -> Operation system: Ubuntu 18.04 Ruby version: 2.5.1 GCC version: 7.3.0 SUMO version: 0.32 Install SUMO in Ubuntu: $ sudo apt-get install sumo sumo-tools sumo-doc Setup QMaxSAT solver with incremental approach $ cd ./source_code/sumoutil/QMaxSAT_ncc/code/ $ make clean && make $ cp ./qmaxsatNcc_g3 ../../encodedProblem/qmaxsatNcc_g3 ===== Part B ===== How to run experiments (described in Section 5)? -> Firstly, $ cd ./source_code/sumoutil/sample/001.Tsukuba we can simulate an experiment for SBI allocation (existing method) $ ./runSBI.sh or, we can simulate an experiment for SAT-based allocation (proposed approach) $ ./runSAT.sh All output files are exported to the following directories: ./source_code/sumoutil/expDir/genrdMaxInst/ ./source_code/sumoutil/expDir/maxSATime/ ./source_code/sumoutil/expDir/seqOpTime/ All log files are exported to the directory: ./source_code/sumoutil/sample/001.Tsukuba/,Log/ Do not forget to remove the generated files (including encode files, log files, answer files) before the next running of ./runSBI.sh or ./runSAT.sh $ ./reset.sh The default parameter settings: the number of taxis = 20 the demand occurrence frequency = 3600/100 (interval = 100) ... We can change any test value (integer) in the following files: ./source_code/sumoutil/sample/001.Tsukuba/tsukuba.00.savSimConf.json (taxi's information/parameters) ./source_code/sumoutil/sample/001.Tsukuba/tsukuba.00.demandConf.json (demand's information/parameters) ===== Part C ===== How to simulate for the real-world data (mentioned in Appendix D)? -> Firstly, $ cd ./source_code/sumoutil/sample we need to build the symbolic links $ ln -s ../Savs ./Savs && ln -s ../Tools ./Tools && ln -s ../Traci ./Traci Then, $ cd ./2018.1005.Yokohama we can simulate an experiment for SBI allocation (existing method) $ ./runSBI.sh or, we can simulate an experiment for SAT-based allocation (proposed approach) $ ./runSAT.sh All output files are exported to the following directories: ./source_code/sumoutil/expDir/genrdMaxInst/ ./source_code/sumoutil/expDir/maxSATime/ ./source_code/sumoutil/expDir/seqOpTime/ All log files are exported to the directory: ./source_code/sumoutil/sample/2018.1005.Yokohama/,Log/ Do not forget to remove the generated files (including encode files, log files, answer files) before the next running of ./runSBI.sh or ./runSAT.sh $ ./reset.sh The default parameter settings: the date of the imported real-world data = 2018-12-01 ... We can change any test value (integer) in the following files: ./source_code/sumoutil/sample/2018.1005.Yokohama/yokohamaNedo.02.savSimConf.json (taxi's information/parameters) ./source_code/sumoutil/sample/2018.1005.Yokohama/yokohamaNedo.02.demandConf.json (demand's information/parameters) ===== Part D ===== A detected algorithm core with a sample initialization is given in directory ./source_code/sat-based_rtss_v1.1/
About
An Incremental SAT-Based Approach for Solving the Real-Time Taxi-Sharing Service Problem (preprint version, SUMO simulation)
Topics
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published