Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Deprecation of algorithm utils (algorithm_globals and validation) #10905

Merged
merged 9 commits into from
Oct 12, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion qiskit/algorithms/amplitude_amplifiers/grover.py
Original file line number Diff line number Diff line change
Expand Up @@ -296,7 +296,9 @@ def amplify(self, amplification_problem: AmplificationProblem) -> "GroverResult"

# sample from [0, power) if specified
if self._sample_from_iterations:
power = algorithm_globals.random.integers(power)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
power = algorithm_globals.random.integers(power)
Comment on lines -299 to +301
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We don't need to (and mostly shouldn't) do this in deprecated library code. It's ok for the deprecated code to call other deprecated code, and the stacklevel should be set on algorithms_global correctly such that this file gets the "blame", which makes the warning invisible to users.

# Run a grover experiment for a given power of the Grover operator.
if self._sampler is not None:
qc = self.construct_circuit(amplification_problem, power, measurement=True)
Expand Down
6 changes: 5 additions & 1 deletion qiskit/algorithms/eigensolvers/numpy_eigensolver.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@

from __future__ import annotations

import warnings
from typing import Callable, Union, List, Optional
import logging
import numpy as np
Expand Down Expand Up @@ -61,7 +62,10 @@ def __init__(
elements that satisfies the criterion is smaller than ``k``, then the returned list will
have fewer elements and can even be empty.
"""
validate_min("k", k, 1)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
validate_min("k", k, 1)

super().__init__()

self._in_k = k
Expand Down
7 changes: 5 additions & 2 deletions qiskit/algorithms/minimum_eigensolvers/adapt_vqe.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@

import re
import logging
import warnings
from typing import Any

import numpy as np
Expand Down Expand Up @@ -129,8 +130,10 @@ def __init__(
threshold: once all gradients have an absolute value smaller than this threshold, the
algorithm has converged and terminates. Defaults to ``1e-5``.
"""
validate_min("gradient_threshold", gradient_threshold, 1e-15)
validate_min("eigenvalue_threshold", eigenvalue_threshold, 1e-15)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
validate_min("gradient_threshold", gradient_threshold, 1e-15)
validate_min("eigenvalue_threshold", eigenvalue_threshold, 1e-15)

self.solver = solver
self.gradient_threshold = gradient_threshold
Expand Down
5 changes: 4 additions & 1 deletion qiskit/algorithms/minimum_eigensolvers/qaoa.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@

from __future__ import annotations

import warnings
from typing import Callable, Any
import numpy as np

Expand Down Expand Up @@ -118,7 +119,9 @@ def __init__(
These data are: the evaluation count, the optimizer parameters for the ansatz, the
evaluated value, the metadata dictionary.
"""
validate_min("reps", reps, 1)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
validate_min("reps", reps, 1)

self.reps = reps
self.mixer = mixer
Expand Down
5 changes: 4 additions & 1 deletion qiskit/algorithms/optimizers/aqgd.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
import logging
from collections.abc import Callable
from typing import Any
import warnings

import numpy as np
from qiskit.utils.validation import validate_range_exclusive_max
Expand Down Expand Up @@ -89,7 +90,9 @@ def __init__(
"`eta`, and `momentum` must have the same length."
)
for m in momentum:
validate_range_exclusive_max("momentum", m, 0, 1)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
validate_range_exclusive_max("momentum", m, 0, 1)

self._eta = eta
self._maxiter = maxiter
Expand Down
6 changes: 5 additions & 1 deletion qiskit/algorithms/optimizers/gsls.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,8 @@

from __future__ import annotations

import warnings

from collections.abc import Callable
from typing import Any, SupportsFloat
import numpy as np
Expand Down Expand Up @@ -262,7 +264,9 @@ def sample_points(
Returns:
A tuple containing the sampling points and the directions.
"""
normal_samples = algorithm_globals.random.normal(size=(num_points, n))
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
normal_samples = algorithm_globals.random.normal(size=(num_points, n))
row_norms = np.linalg.norm(normal_samples, axis=1, keepdims=True)
directions = normal_samples / row_norms
points = x + self._options["sampling_radius"] * directions
Expand Down
9 changes: 7 additions & 2 deletions qiskit/algorithms/optimizers/p_bfgs.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
import logging
import multiprocessing
import platform
import warnings
from collections.abc import Callable
from typing import SupportsFloat

Expand Down Expand Up @@ -73,7 +74,9 @@ def __init__(
kwargs: additional kwargs for scipy.optimize.minimize.
"""
if max_processes:
validate_min("max_processes", max_processes, 1)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
validate_min("max_processes", max_processes, 1)

if options is None:
options = {}
Expand Down Expand Up @@ -138,7 +141,9 @@ def optimize_runner(_queue, _i_pt): # Multi-process sampling
# Start off as many other processes running the optimize (can be 0)
processes = []
for _ in range(num_procs):
i_pt = algorithm_globals.random.uniform(low, high) # Another random point in bounds
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
i_pt = algorithm_globals.random.uniform(low, high) # Another random point in bounds
proc = multiprocessing.Process(target=optimize_runner, args=(queue, i_pt))
processes.append(proc)
proc.start()
Expand Down
7 changes: 6 additions & 1 deletion qiskit/algorithms/optimizers/scipy_optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
"""Wrapper class of scipy.optimize.minimize."""
from __future__ import annotations

import warnings
from collections.abc import Callable
from typing import Any

Expand Down Expand Up @@ -73,7 +74,11 @@ def __init__(
self._initial_point_support_level = OptimizerSupportLevel.required

self._options = options if options is not None else {}
validate_min("max_evals_grouped", max_evals_grouped, 1)

with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
validate_min("max_evals_grouped", max_evals_grouped, 1)

self._max_evals_grouped = max_evals_grouped
self._kwargs = kwargs

Expand Down
16 changes: 10 additions & 6 deletions qiskit/algorithms/optimizers/spsa.py
Original file line number Diff line number Diff line change
Expand Up @@ -687,12 +687,16 @@ def optimize(
def bernoulli_perturbation(dim, perturbation_dims=None):
"""Get a Bernoulli random perturbation."""
if perturbation_dims is None:
return 1 - 2 * algorithm_globals.random.binomial(1, 0.5, size=dim)

pert = 1 - 2 * algorithm_globals.random.binomial(1, 0.5, size=perturbation_dims)
indices = algorithm_globals.random.choice(
list(range(dim)), size=perturbation_dims, replace=False
)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
return 1 - 2 * algorithm_globals.random.binomial(1, 0.5, size=dim)

with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
pert = 1 - 2 * algorithm_globals.random.binomial(1, 0.5, size=perturbation_dims)
indices = algorithm_globals.random.choice(
list(range(dim)), size=perturbation_dims, replace=False
)
result = np.zeros(dim)
result[indices] = pert

Expand Down
21 changes: 13 additions & 8 deletions qiskit/algorithms/optimizers/umda.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,8 @@

from __future__ import annotations

import warnings

from collections.abc import Callable
from typing import Any
import numpy as np
Expand Down Expand Up @@ -173,10 +175,11 @@ def _new_generation(self):
"""Build a new generation sampled from the vector of probabilities.
Updates the generation pandas dataframe
"""

gen = algorithm_globals.random.normal(
self._vector[0, :], self._vector[1, :], [self._size_gen, self._n_variables]
)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
gen = algorithm_globals.random.normal(
self._vector[0, :], self._vector[1, :], [self._size_gen, self._n_variables]
)

self._generation = self._generation[: int(self.ELITE_FACTOR * len(self._generation))]
self._generation = np.vstack((self._generation, gen))
Expand Down Expand Up @@ -228,10 +231,12 @@ def minimize(

self._vector = self._initialization()

# initialization of generation
self._generation = algorithm_globals.random.normal(
self._vector[0, :], self._vector[1, :], [self._size_gen, self._n_variables]
)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
# initialization of generation
self._generation = algorithm_globals.random.normal(
self._vector[0, :], self._vector[1, :], [self._size_gen, self._n_variables]
)

for _ in range(self._maxiter):
self._check_generation(fun)
Expand Down
5 changes: 4 additions & 1 deletion qiskit/algorithms/time_evolvers/pvqd/pvqd.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
from __future__ import annotations

import logging
import warnings
from collections.abc import Callable

import numpy as np
Expand Down Expand Up @@ -197,7 +198,9 @@ def step(
loss, gradient = self.get_loss(hamiltonian, ansatz, dt, theta)

if initial_guess is None:
initial_guess = algorithm_globals.random.random(self.initial_parameters.size) * 0.01
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
initial_guess = algorithm_globals.random.random(self.initial_parameters.size) * 0.01

if isinstance(self.optimizer, Optimizer):
optimizer_result = self.optimizer.minimize(loss, initial_guess, gradient)
Expand Down
5 changes: 4 additions & 1 deletion qiskit/algorithms/utils/validate_initial_point.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@

from __future__ import annotations

import warnings
from collections.abc import Sequence

import numpy as np
Expand Down Expand Up @@ -58,7 +59,9 @@ def validate_initial_point(
upper_bounds.append(upper if upper is not None else 2 * np.pi)

# sample from within bounds
point = algorithm_globals.random.uniform(lower_bounds, upper_bounds)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
point = algorithm_globals.random.uniform(lower_bounds, upper_bounds)

elif len(point) != expected_size:
raise ValueError(
Expand Down
9 changes: 6 additions & 3 deletions qiskit/opflow/evolutions/trotterizations/qdrift.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@

"""

import warnings
from typing import List, Union, cast

import numpy as np
Expand Down Expand Up @@ -77,8 +78,10 @@ def convert(self, operator: OperatorBase) -> OperatorBase:
# The protocol calls for the removal of the individual coefficients,
# and multiplication by a constant factor.
scaled_ops = [(op * (factor / op.coeff)).exp_i() for op in operator_iter]
sampled_ops = algorithm_globals.random.choice(
scaled_ops, size=(int(N * self.reps),), p=weights / lambd
)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
sampled_ops = algorithm_globals.random.choice(
scaled_ops, size=(int(N * self.reps),), p=weights / lambd
)

return ComposedOp(sampled_ops).reduce()
31 changes: 17 additions & 14 deletions qiskit/opflow/operator_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
"""OperatorBase Class"""

import itertools
import warnings
from abc import ABC, abstractmethod
from copy import deepcopy
from typing import Dict, List, Optional, Set, Tuple, Union, cast
Expand Down Expand Up @@ -490,20 +491,22 @@ def _check_massive(method: str, matrix: bool, num_qubits: int, massive: bool) ->
Raises:
ValueError: Massive is False and number of qubits is greater than 16
"""
if num_qubits > 16 and not massive and not algorithm_globals.massive:
dim = 2**num_qubits
if matrix:
obj_type = "matrix"
dimensions = f"{dim}x{dim}"
else:
obj_type = "vector"
dimensions = f"{dim}"
raise ValueError(
f"'{method}' will return an exponentially large {obj_type}, "
f"in this case '{dimensions}' elements. "
"Set algorithm_globals.massive=True or the method argument massive=True "
"if you want to proceed."
)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
if num_qubits > 16 and not massive and not algorithm_globals.massive:
dim = 2**num_qubits
if matrix:
obj_type = "matrix"
dimensions = f"{dim}x{dim}"
else:
obj_type = "vector"
dimensions = f"{dim}"
raise ValueError(
f"'{method}' will return an exponentially large {obj_type}, "
f"in this case '{dimensions}' elements. "
"Set algorithm_globals.massive=True or the method argument massive=True "
"if you want to proceed."
)

# Printing

Expand Down
15 changes: 9 additions & 6 deletions qiskit/opflow/state_fns/dict_state_fn.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
"""DictStateFn Class"""

import itertools
import warnings
from typing import Dict, List, Optional, Set, Union, cast

import numpy as np
Expand Down Expand Up @@ -328,12 +329,14 @@ def sample(
self, shots: int = 1024, massive: bool = False, reverse_endianness: bool = False
) -> Dict[str, float]:
probs = np.square(np.abs(np.array(list(self.primitive.values()))))
unique, counts = np.unique(
algorithm_globals.random.choice(
list(self.primitive.keys()), size=shots, p=(probs / sum(probs))
),
return_counts=True,
)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
unique, counts = np.unique(
algorithm_globals.random.choice(
list(self.primitive.keys()), size=shots, p=(probs / sum(probs))
),
return_counts=True,
)
counts = dict(zip(unique, counts))
if reverse_endianness:
scaled_dict = {bstr[::-1]: (prob / shots) for (bstr, prob) in counts.items()}
Expand Down
16 changes: 9 additions & 7 deletions qiskit/opflow/state_fns/vector_state_fn.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@

"""VectorStateFn Class"""


import warnings
from typing import Dict, List, Optional, Set, Union, cast

import numpy as np
Expand Down Expand Up @@ -243,12 +243,14 @@ def sample(
deterministic_counts = self.primitive.probabilities_dict()
# Don't need to square because probabilities_dict already does.
probs = np.array(list(deterministic_counts.values()))
unique, counts = np.unique(
algorithm_globals.random.choice(
list(deterministic_counts.keys()), size=shots, p=(probs / sum(probs))
),
return_counts=True,
)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning)
unique, counts = np.unique(
algorithm_globals.random.choice(
list(deterministic_counts.keys()), size=shots, p=(probs / sum(probs))
),
return_counts=True,
)
counts = dict(zip(unique, counts))
if reverse_endianness:
scaled_dict = {bstr[::-1]: (prob / shots) for (bstr, prob) in counts.items()}
Expand Down
Loading