SSBR is a tool for single step Bayesian regression analyses.
####Quick-start
using JWAS: Datasets,SSBR,misc
#data files from QTLDatasets package
pedfile = Datasets.dataset("testSSBR","ped.txt")
genofile = Datasets.dataset("testSSBR","genotype.txt")
phenofile = Datasets.dataset("testSSBR","phenotype.txt")
fixedfile = Datasets.dataset("testSSBR","fixed.txt")
Validation = Datasets.dataset("testSSBR","validation.txt")
#set up input parameters
input=InputParameters()
input.method = "BayesC"
input.varGenotypic = 4.48
input.varResidual = 6.72
input.probFixed = 0.99
input.outFreq = 10000
MCMCinfo(input)
#MCMC Information:
#seed 314
#chainLength 50000
#method BayesC
#outFreq 1000
#probFixed 0.990
#varGenotypic 4.480
#varResidual 6.720
#estimateVariance true
#estimatePi false
#estimateScale false
#dfEffectVar 4.000
#nuRes 4.000
#nuGen 4.000
#centering false
#run it
out=runSSBR(input,pedigree=pedfile,genotype=genofile,phenotype=phenofile,fixedfile=fixedfile);
#check accuracy
using DataFrames
df = readtable(Validation, eltypes =[UTF8String, Float64], separator = ' ',header=false,names=[:ID,:EBV]);
comp=join(out,df,on=:ID);
cor(comp[:EBV],comp[:EBV_1])
####More
- homepage: QTL.rocks
- Documentation: available here
- Authors: Hao Cheng,Rohan Fernando