Skip to content

Commit

Permalink
Update indent in docstrings
Browse files Browse the repository at this point in the history
  • Loading branch information
bgoujaud committed Dec 23, 2023
1 parent d08f368 commit 6adfbf6
Show file tree
Hide file tree
Showing 74 changed files with 147 additions and 147 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ def wc_polyak_steps_in_distance_to_optimum(L, mu, gamma, wrapper="cvxpy", solver
(PEPit) Final upper bound (dual): 0.6694214876573649 and lower bound (primal example): 0.6694214876445734
(PEPit) Duality gap: absolute: 1.2791434578218741e-11 and relative: 1.91081923934451e-11
*** Example file: worst-case performance of Polyak steps ***
PEPit guarantee: ||x_1 - x_*||^2 <= 0.669421 ||x_0 - x_*||^2
PEPit guarantee: ||x_1 - x_*||^2 <= 0.669421 ||x_0 - x_*||^2
Theoretical guarantee: ||x_1 - x_*||^2 <= 0.669421 ||x_0 - x_*||^2
"""
Expand Down Expand Up @@ -142,7 +142,7 @@ def wc_polyak_steps_in_distance_to_optimum(L, mu, gamma, wrapper="cvxpy", solver
# Print conclusion if required
if verbose != -1:
print('*** Example file: worst-case performance of Polyak steps ***')
print('\tPEPit guarantee:\t\t ||x_1 - x_*||^2 <= {:.6} ||x_0 - x_*||^2 '.format(pepit_tau))
print('\tPEPit guarantee:\t ||x_1 - x_*||^2 <= {:.6} ||x_0 - x_*||^2 '.format(pepit_tau))
print('\tTheoretical guarantee:\t ||x_1 - x_*||^2 <= {:.6} ||x_0 - x_*||^2'.format(theoretical_tau))

# Return the worst-case guarantee of the evaluated method (and the reference theoretical value)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ def wc_polyak_steps_in_function_value(L, mu, gamma, wrapper="cvxpy", solver=None
(PEPit) Final upper bound (dual): 0.6694214228930617 and lower bound (primal example): 0.6694214253294206
(PEPit) Duality gap: absolute: -2.4363588924103396e-09 and relative: -3.6394994247628294e-09
*** Example file: worst-case performance of Polyak steps ***
PEPit guarantee: f(x_1) - f_* <= 0.669421 (f(x_0) - f_*)
PEPit guarantee: f(x_1) - f_* <= 0.669421 (f(x_0) - f_*)
Theoretical guarantee: f(x_1) - f_* <= 0.669421 (f(x_0) - f_*)
"""
Expand Down Expand Up @@ -142,7 +142,7 @@ def wc_polyak_steps_in_function_value(L, mu, gamma, wrapper="cvxpy", solver=None
# Print conclusion if required
if verbose != -1:
print('*** Example file: worst-case performance of Polyak steps ***')
print('\tPEPit guarantee:\t\t f(x_1) - f_* <= {:.6} (f(x_0) - f_*) '.format(pepit_tau))
print('\tPEPit guarantee:\t f(x_1) - f_* <= {:.6} (f(x_0) - f_*) '.format(pepit_tau))
print('\tTheoretical guarantee:\t f(x_1) - f_* <= {:.6} (f(x_0) - f_*)'.format(theoretical_tau))

# Return the worst-case guarantee of the evaluated method (and the reference theoretical value)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,7 @@ def wc_accelerated_proximal_gradient(mu, L, n, wrapper="cvxpy", solver=None, ver
(PEPit) Final upper bound (dual): 0.05263158967733932 and lower bound (primal example): 0.052631584231766296
(PEPit) Duality gap: absolute: 5.445573027229589e-09 and relative: 1.0346587712901982e-07
*** Example file: worst-case performance of the Accelerated Proximal Gradient Method in function values***
PEPit guarantee: f(x_n)-f_* <= 0.0526316 ||x0 - xs||^2
PEPit guarantee: f(x_n)-f_* <= 0.0526316 ||x0 - xs||^2
Theoretical guarantee: f(x_n)-f_* <= 0.0526316 ||x0 - xs||^2
"""
Expand Down Expand Up @@ -144,7 +144,7 @@ def wc_accelerated_proximal_gradient(mu, L, n, wrapper="cvxpy", solver=None, ver
if verbose != -1:
print('*** Example file:'
' worst-case performance of the Accelerated Proximal Gradient Method in function values***')
print('\tPEPit guarantee:\t\t f(x_n)-f_* <= {:.6} ||x0 - xs||^2'.format(pepit_tau))
print('\tPEPit guarantee:\t f(x_n)-f_* <= {:.6} ||x0 - xs||^2'.format(pepit_tau))
print('\tTheoretical guarantee:\t f(x_n)-f_* <= {:.6} ||x0 - xs||^2'.format(theoretical_tau))

# Return the worst-case guarantee of the evaluated method ( and the reference theoretical value)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ def wc_bregman_proximal_point(gamma, n, wrapper="cvxpy", solver=None, verbose=1)
(PEPit) Final upper bound (dual): 0.06666666638907502 and lower bound (primal example): 0.06666666577966435
(PEPit) Duality gap: absolute: 6.094106747012162e-10 and relative: 9.1411602421417e-09
*** Example file: worst-case performance of the Bregman Proximal Point in function values ***
PEPit guarantee: F(x_n)-F_* <= 0.0666667 Dh(x_*; x_0)
PEPit guarantee: F(x_n)-F_* <= 0.0666667 Dh(x_*; x_0)
Theoretical guarantee: F(x_n)-F_* <= 0.0666667 Dh(x_*; x_0)
"""
Expand Down Expand Up @@ -124,7 +124,7 @@ def wc_bregman_proximal_point(gamma, n, wrapper="cvxpy", solver=None, verbose=1)
# Print conclusion if required
if verbose != -1:
print('*** Example file: worst-case performance of the Bregman Proximal Point in function values ***')
print('\tPEPit guarantee:\t\t F(x_n)-F_* <= {:.6} Dh(x_*; x_0)'.format(pepit_tau))
print('\tPEPit guarantee:\t F(x_n)-F_* <= {:.6} Dh(x_*; x_0)'.format(pepit_tau))
print('\tTheoretical guarantee:\t F(x_n)-F_* <= {:.6} Dh(x_*; x_0)'.format(theoretical_tau))
# Return the worst-case guarantee of the evaluated method (and the upper theoretical value)
return pepit_tau, theoretical_tau
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ def wc_douglas_rachford_splitting(L, alpha, theta, n, wrapper="cvxpy", solver=No
(PEPit) Final upper bound (dual): 0.027791732322924277 and lower bound (primal example): 0.027791729871150122
(PEPit) Duality gap: absolute: 2.4517741552265715e-09 and relative: 8.821955907723812e-08
*** Example file: worst-case performance of the Douglas Rachford Splitting in function values ***
PEPit guarantee: f(y_n)-f_* <= 0.0278 ||x0 - xs||^2
PEPit guarantee: f(y_n)-f_* <= 0.0278 ||x0 - xs||^2
Theoretical guarantee: f(y_n)-f_* <= 0.0278 ||x0 - xs||^2
"""
Expand Down Expand Up @@ -147,7 +147,7 @@ def wc_douglas_rachford_splitting(L, alpha, theta, n, wrapper="cvxpy", solver=No
# Print conclusion if required
if verbose != -1:
print('*** Example file: worst-case performance of the Douglas Rachford Splitting in function values ***')
print('\tPEPit guarantee:\t\t f(y_n)-f_* <= {:.3} ||x0 - xs||^2'.format(pepit_tau))
print('\tPEPit guarantee:\t f(y_n)-f_* <= {:.3} ||x0 - xs||^2'.format(pepit_tau))
if theta == 1 and alpha == 1 and L == 1 and n <= 10:
print('\tTheoretical guarantee:\t f(y_n)-f_* <= {:.3} ||x0 - xs||^2'.format(theoretical_tau))

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,7 @@ def wc_douglas_rachford_splitting_contraction(mu, L, alpha, theta, n, wrapper="c
(PEPit) Final upper bound (dual): 0.3501278016887412 and lower bound (primal example): 0.3501278029546837
(PEPit) Duality gap: absolute: -1.2659425174810224e-09 and relative: -3.6156583590274623e-09
*** Example file: worst-case performance of the Douglas-Rachford splitting in distance ***
PEPit guarantee: ||w - wp||^2 <= 0.350128 ||w0 - w0p||^2
PEPit guarantee: ||w - wp||^2 <= 0.350128 ||w0 - w0p||^2
Theoretical guarantee: ||w - wp||^2 <= 0.350128 ||w0 - w0p||^2
"""
Expand Down Expand Up @@ -158,7 +158,7 @@ def wc_douglas_rachford_splitting_contraction(mu, L, alpha, theta, n, wrapper="c
# Print conclusion if required
if verbose != -1:
print('*** Example file: worst-case performance of the Douglas-Rachford splitting in distance ***')
print('\tPEPit guarantee:\t\t ||w - wp||^2 <= {:.6} ||w0 - w0p||^2'.format(pepit_tau))
print('\tPEPit guarantee:\t ||w - wp||^2 <= {:.6} ||w0 - w0p||^2'.format(pepit_tau))
if theta == 1:
print('\tTheoretical guarantee:\t ||w - wp||^2 <= {:.6} ||w0 - w0p||^2'.format(theoretical_tau))

Expand Down
4 changes: 2 additions & 2 deletions PEPit/examples/composite_convex_minimization/frank_wolfe.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ def wc_frank_wolfe(L, D, n, wrapper="cvxpy", solver=None, verbose=1):
(PEPit) Final upper bound (dual): 0.07828954284798424 and lower bound (primal example): 0.07828953904645822
(PEPit) Duality gap: absolute: 3.801526024527213e-09 and relative: 4.855726666459652e-08
*** Example file: worst-case performance of the Conditional Gradient (Frank-Wolfe) in function value ***
PEPit guarantee: f(x_n)-f_* <= 0.0782895 ||x0 - xs||^2
PEPit guarantee: f(x_n)-f_* <= 0.0782895 ||x0 - xs||^2
Theoretical guarantee: f(x_n)-f_* <= 0.166667 ||x0 - xs||^2
"""
Expand Down Expand Up @@ -141,7 +141,7 @@ def wc_frank_wolfe(L, D, n, wrapper="cvxpy", solver=None, verbose=1):
if verbose != -1:
print('*** Example file:'
' worst-case performance of the Conditional Gradient (Frank-Wolfe) in function value ***')
print('\tPEPit guarantee:\t\t f(x_n)-f_* <= {:.6} ||x0 - xs||^2'.format(pepit_tau))
print('\tPEPit guarantee:\t f(x_n)-f_* <= {:.6} ||x0 - xs||^2'.format(pepit_tau))
print('\tTheoretical guarantee:\t f(x_n)-f_* <= {:.6} ||x0 - xs||^2'.format(theoretical_tau))
# Return the worst-case guarantee of the evaluated method (and the upper theoretical value)
return pepit_tau, theoretical_tau
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,7 @@ def wc_improved_interior_algorithm(L, mu, c, lam, n, wrapper="cvxpy", solver=Non
(PEPit) Final upper bound (dual): 0.06807717277007506 and lower bound (primal example): 0.06807717876241919
(PEPit) Duality gap: absolute: -5.992344120908655e-09 and relative: -8.802280338057462e-08
*** Example file: worst-case performance of the Improved interior gradient algorithm in function values ***
PEPit guarantee: F(x_n)-F_* <= 0.0680772 (c * Dh(xs;x0) + f1(x0) - F_*)
PEPit guarantee: F(x_n)-F_* <= 0.0680772 (c * Dh(xs;x0) + f1(x0) - F_*)
Theoretical guarantee: F(x_n)-F_* <= 0.111111 (c * Dh(xs;x0) + f1(x0) - F_*)
"""
Expand Down Expand Up @@ -163,7 +163,7 @@ def wc_improved_interior_algorithm(L, mu, c, lam, n, wrapper="cvxpy", solver=Non
if verbose != -1:
print('*** Example file:'
' worst-case performance of the Improved interior gradient algorithm in function values ***')
print('\tPEPit guarantee:\t\t F(x_n)-F_* <= {:.6} (c * Dh(xs;x0) + f1(x0) - F_*)'.format(pepit_tau))
print('\tPEPit guarantee:\t F(x_n)-F_* <= {:.6} (c * Dh(xs;x0) + f1(x0) - F_*)'.format(pepit_tau))
print('\tTheoretical guarantee:\t F(x_n)-F_* <= {:.6} (c * Dh(xs;x0) + f1(x0) - F_*)'.format(theoretical_tau))

# Return the worst-case guarantee of the evaluated method (and the upper theoretical value)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ def wc_no_lips_in_bregman_divergence(L, gamma, n, wrapper="cvxpy", solver=None,
(PEPit) Final upper bound (dual): 0.022222222222206895 and lower bound (primal example): 0.022222222222201146
(PEPit) Duality gap: absolute: 5.748873599387139e-15 and relative: 2.586993119726666e-13
*** Example file: worst-case performance of the NoLips_2 in Bregman divergence ***
PEPit guarantee: min_t Dh(x_(t-1); x_t) <= 0.0222222 Dh(x_*; x_0)
PEPit guarantee: min_t Dh(x_(t-1); x_t) <= 0.0222222 Dh(x_*; x_0)
Theoretical guarantee: min_t Dh(x_(t-1); x_t) <= 0.0222222 Dh(x_*; x_0)
"""
Expand Down Expand Up @@ -156,7 +156,7 @@ def wc_no_lips_in_bregman_divergence(L, gamma, n, wrapper="cvxpy", solver=None,
# Print conclusion if required
if verbose != -1:
print('*** Example file: worst-case performance of the NoLips_2 in Bregman divergence ***')
print('\tPEPit guarantee:\t\t min_t Dh(x_(t-1); x_t) <= {:.6} Dh(x_*; x_0)'.format(pepit_tau))
print('\tPEPit guarantee:\t min_t Dh(x_(t-1); x_t) <= {:.6} Dh(x_*; x_0)'.format(pepit_tau))
print('\tTheoretical guarantee:\t min_t Dh(x_(t-1); x_t) <= {:.6} Dh(x_*; x_0)'.format(theoretical_tau))

# Return the worst-case guarantee of the evaluated method (and the upper theoretical value)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ def wc_no_lips_in_function_value(L, gamma, n, wrapper="cvxpy", solver=None, verb
(PEPit) Final upper bound (dual): 0.666666666662425 and lower bound (primal example): 0.6666666666481619
(PEPit) Duality gap: absolute: 1.4263146219661849e-11 and relative: 2.139471933008663e-11
*** Example file: worst-case performance of the NoLips in function values ***
PEPit guarantee: F(x_n) - F_* <= 0.666667 Dh(x_*; x_0)
PEPit guarantee: F(x_n) - F_* <= 0.666667 Dh(x_*; x_0)
Theoretical guarantee: F(x_n) - F_* <= 0.666667 Dh(x_*; x_0)
"""
Expand Down Expand Up @@ -155,7 +155,7 @@ def wc_no_lips_in_function_value(L, gamma, n, wrapper="cvxpy", solver=None, verb
# Print conclusion if required
if verbose != -1:
print('*** Example file: worst-case performance of the NoLips in function values ***')
print('\tPEPit guarantee:\t\t F(x_n) - F_* <= {:.6} Dh(x_*; x_0)'.format(pepit_tau))
print('\tPEPit guarantee:\t F(x_n) - F_* <= {:.6} Dh(x_*; x_0)'.format(pepit_tau))
print('\tTheoretical guarantee:\t F(x_n) - F_* <= {:.6} Dh(x_*; x_0)'.format(theoretical_tau))
# Return the worst-case guarantee of the evaluated method (and the upper theoretical value)
return pepit_tau, theoretical_tau
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ def wc_proximal_gradient(L, mu, gamma, n, wrapper="cvxpy", solver=None, verbose=
(PEPit) Final upper bound (dual): 0.6561000458035535 and lower bound (primal example): 0.6561000457701127
(PEPit) Duality gap: absolute: 3.3440805680129415e-11 and relative: 5.096906469634138e-11
*** Example file: worst-case performance of the Proximal Gradient Method in function values***
PEPit guarantee: ||x_n - x_*||^2 <= 0.6561 ||x0 - xs||^2
PEPit guarantee: ||x_n - x_*||^2 <= 0.6561 ||x0 - xs||^2
Theoretical guarantee: ||x_n - x_*||^2 <= 0.6561 ||x0 - xs||^2
"""
Expand Down Expand Up @@ -146,7 +146,7 @@ def wc_proximal_gradient(L, mu, gamma, n, wrapper="cvxpy", solver=None, verbose=
# Print conclusion if required
if verbose != -1:
print('*** Example file: worst-case performance of the Proximal Gradient Method in function values***')
print('\tPEPit guarantee:\t\t ||x_n - x_*||^2 <= {:.6} ||x0 - xs||^2'.format(pepit_tau))
print('\tPEPit guarantee:\t ||x_n - x_*||^2 <= {:.6} ||x0 - xs||^2'.format(pepit_tau))
print('\tTheoretical guarantee:\t ||x_n - x_*||^2 <= {:.6} ||x0 - xs||^2'.format(theoretical_tau))

# Return the worst-case guarantee of the evaluated method ( and the reference theoretical value)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ def wc_three_operator_splitting(mu1, L1, L3, alpha, theta, n, wrapper="cvxpy", s
(PEPit) Final upper bound (dual): 0.475452328074928 and lower bound (primal example): 0.4754523280192519
(PEPit) Duality gap: absolute: 5.5676074861565894e-11 and relative: 1.1710127720588522e-10
*** Example file: worst-case performance of the Three Operator Splitting in distance ***
PEPit guarantee: ||w^2_n - w^1_n||^2 <= 0.475452 ||x0 - ws||^2
PEPit guarantee: ||w^2_n - w^1_n||^2 <= 0.475452 ||x0 - ws||^2
"""

Expand Down Expand Up @@ -146,7 +146,7 @@ def wc_three_operator_splitting(mu1, L1, L3, alpha, theta, n, wrapper="cvxpy", s
# Print conclusion if required
if verbose != -1:
print('*** Example file: worst-case performance of the Three Operator Splitting in distance ***')
print('\tPEPit guarantee:\t\t ||w^2_n - w^1_n||^2 <= {:.6} ||x0 - ws||^2'.format(pepit_tau))
print('\tPEPit guarantee:\t ||w^2_n - w^1_n||^2 <= {:.6} ||x0 - ws||^2'.format(pepit_tau))

# Return the worst-case guarantee of the evaluated method (and the upper theoretical value)
return pepit_tau, theoretical_tau
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@ def wc_accelerated_gradient_flow_convex(t, wrapper="cvxpy", solver=None, verbose
(PEPit) Final upper bound (dual): 0.0 and lower bound (primal example): -4.440892098500626e-15
(PEPit) Duality gap: absolute: 4.440892098500626e-15 and relative: -1.0
*** Example file: worst-case performance of an accelerated gradient flow ***
PEPit guarantee: d/dt V(X_t,t) <= 0.0
PEPit guarantee: d/dt V(X_t,t) <= 0.0
Theoretical guarantee: d/dt V(X_t) <= 0.0
"""
Expand Down Expand Up @@ -128,7 +128,7 @@ def wc_accelerated_gradient_flow_convex(t, wrapper="cvxpy", solver=None, verbose
# Print conclusion if required
if verbose != -1:
print('*** Example file: worst-case performance of an accelerated gradient flow ***')
print('\tPEPit guarantee:\t\t d/dt V(X_t,t) <= {:.6}'.format(pepit_tau))
print('\tPEPit guarantee:\t d/dt V(X_t,t) <= {:.6}'.format(pepit_tau))
print('\tTheoretical guarantee:\t d/dt V(X_t) <= {:.6}'.format(theoretical_tau))

# Return the worst-case guarantee of the evaluated method (and the reference theoretical value)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ def wc_accelerated_gradient_flow_strongly_convex(mu, psd=True, wrapper="cvxpy",
(PEPit) Final upper bound (dual): -0.31622777578996025 and lower bound (primal example): -0.31622777856752843
(PEPit) Duality gap: absolute: 2.7775681754604875e-09 and relative: -8.783441442249373e-09
*** Example file: worst-case performance of an accelerated gradient flow ***
PEPit guarantee: d/dt V(X_t,t) <= -0.316228 V(X_t,t)
PEPit guarantee: d/dt V(X_t,t) <= -0.316228 V(X_t,t)
Theoretical guarantee: d/dt V(X_t) <= -0.316228 V(X_t,t)
"""
Expand Down Expand Up @@ -155,7 +155,7 @@ def wc_accelerated_gradient_flow_strongly_convex(mu, psd=True, wrapper="cvxpy",
# Print conclusion if required
if verbose != -1:
print('*** Example file: worst-case performance of an accelerated gradient flow ***')
print('\tPEPit guarantee:\t\t d/dt V(X_t,t) <= {:.6} V(X_t,t)'.format(pepit_tau))
print('\tPEPit guarantee:\t d/dt V(X_t,t) <= {:.6} V(X_t,t)'.format(pepit_tau))
print('\tTheoretical guarantee:\t d/dt V(X_t) <= {:.6} V(X_t,t)'.format(theoretical_tau))

# Return the worst-case guarantee of the evaluated method (and the reference theoretical value)
Expand Down
4 changes: 2 additions & 2 deletions PEPit/examples/continuous_time_models/gradient_flow_convex.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@ def wc_gradient_flow_convex(t, wrapper="cvxpy", solver=None, verbose=1):
(PEPit) Final upper bound (dual): 0.0 and lower bound (primal example): 2.1751469748629293e-09
(PEPit) Duality gap: absolute: -2.1751469748629293e-09 and relative: -1.0
*** Example file: worst-case performance of the gradient flow ***
PEPit guarantee: d/dt V(X_t) <= 0.0
PEPit guarantee: d/dt V(X_t) <= 0.0
Theoretical guarantee: d/dt V(X_t) <= 0.0
"""
Expand Down Expand Up @@ -127,7 +127,7 @@ def wc_gradient_flow_convex(t, wrapper="cvxpy", solver=None, verbose=1):
# Print conclusion if required
if verbose != -1:
print('*** Example file: worst-case performance of the gradient flow ***')
print('\tPEPit guarantee:\t\t d/dt V(X_t) <= {:.6}'.format(pepit_tau))
print('\tPEPit guarantee:\t d/dt V(X_t) <= {:.6}'.format(pepit_tau))
print('\tTheoretical guarantee:\t d/dt V(X_t) <= {:.6}'.format(theoretical_tau))

# Return the worst-case guarantee of the evaluated method (and the reference theoretical value)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ def wc_gradient_flow_strongly_convex(mu, wrapper="cvxpy", solver=None, verbose=1
(PEPit) Final upper bound (dual): -0.20000002574229303 and lower bound (primal example): -0.20000002010543685
(PEPit) Duality gap: absolute: -5.636856176272076e-09 and relative: 2.8184278048074267e-08
*** Example file: worst-case performance of the gradient flow ***
PEPit guarantee: d/dt[f(X_t)-f_*] <= -0.2 (f(X_t) - f(x_*))
PEPit guarantee: d/dt[f(X_t)-f_*] <= -0.2 (f(X_t) - f(x_*))
Theoretical guarantee: d/dt[f(X_t)-f_*] <= -0.2 (f(X_t) - f(x_*))
"""
Expand Down Expand Up @@ -128,7 +128,7 @@ def wc_gradient_flow_strongly_convex(mu, wrapper="cvxpy", solver=None, verbose=1
# Print conclusion if required
if verbose != -1:
print('*** Example file: worst-case performance of the gradient flow ***')
print('\tPEPit guarantee:\t\t d/dt[f(X_t)-f_*] <= {:.6} (f(X_t) - f(x_*))'.format(pepit_tau))
print('\tPEPit guarantee:\t d/dt[f(X_t)-f_*] <= {:.6} (f(X_t) - f(x_*))'.format(pepit_tau))
print('\tTheoretical guarantee:\t d/dt[f(X_t)-f_*] <= {:.6} (f(X_t) - f(x_*))'.format(theoretical_tau))

# Return the worst-case guarantee of the evaluated method (and the reference theoretical value)
Expand Down
Loading

0 comments on commit 6adfbf6

Please sign in to comment.