A Python library for thermal analysis kinetic methods, providing tools for data preprocessing, kinetic analysis, and result visualization.
- Support for thermal analysis instruments:
- Flexible custom importer for non-standard formats
- Automatic manufacturer detection
- Comprehensive data validation
- Model-fitting methods:
- Johnson-Mehl-Avrami-Kolmogorov (JMAK)
- Kissinger
- Coats-Redfern
- Freeman-Carroll
- Horowitz-Metzger
- Model-Free methods:
- Friedman method
- Kissinger-Akahira-Sunose (KAS)
- Ozawa-Flynn-Wall (OFW)
- Dilatometry analysis
- Data preprocessing capabilities
- Error handling and validation
- Comprehensive plotting functions for:
- Kinetic analysis results
- Dilatometry data
- Transformation analysis
- Custom plot styling options
- Interactive visualization capabilities
Pkynetics requires Python 3.9 or later. Install using pip:
pip install pkynetics
For development installation:
git clone https://github.com/PPeitsch/pkynetics.git
cd pkynetics
pip install -e .[dev]
For detailed installation instructions and requirements, see our Installation Guide.
Complete documentation is available at pkynetics.readthedocs.io, including:
- Detailed API reference
- Usage examples
- Method descriptions
- Best practices
We welcome contributions! Please read our:
For vulnerability reports, please review our Security Policy.
See CHANGELOG.md for a list of changes and version updates.
This project is licensed under the MIT License - see the LICENSE file for details.
If you use Pkynetics in your research, please cite it as:
@software{pkynetics2024,
author = {Pablo Peitsch},
title = {Pkynetics: A Python Library for Thermal Analysis Kinetic Methods},
year = {2024},
publisher = {GitHub},
url = {https://github.com/PPeitsch/pkynetics}
}