Provides a conversion flow for YOLACT_Edge
to models compatible with ONNX, TensorRT, OpenVINO and Myriad (OAK). My own implementation of post-processing allows for e2e inference. Support for Multi-Class NonMaximumSuppression
, CombinedNonMaxSuppression
.
-
Replace
ReduceMax
andArgMax
. -
Multi-Class NonMaximumSuppression, CombinedNonMaxSuppression for ONNX
-
Multi-Class NonMaximumSuppression, CombinedNonMaxSuppression ONNX sample
Kazam_screencast_00019_.mp4
https://github.com/haotian-liu/yolact_edge
- https://github.com/PINTO0309/tflite2tensorflow
- https://github.com/PINTO0309/simple-onnx-processing-tools
See sequence below.
https://github.com/PINTO0309/yolact_edge_onnx_tensorrt_myriad/blob/main/convert_script.txt
https://github.com/PINTO0309/onnx2tf
$ sit4onnx --input_onnx_file_path yolact_edge_mobilenetv2_550x550.onnx
INFO: file: yolact_edge_mobilenetv2_550x550.onnx
INFO: providers: ['TensorrtExecutionProvider', 'CPUExecutionProvider']
INFO: input_name.1: input shape: [1, 3, 550, 550] dtype: float32
INFO: test_loop_count: 10
INFO: total elapsed time: 44.979095458984375 ms
INFO: avg elapsed time per pred: 4.4979095458984375 ms
INFO: output_name.1: x1y1x2y2_score_class shape: [1, 0, 6] dtype: float32
INFO: output_name.2: final_masks shape: [0, 138, 138] dtype: float32
https://github.com/PINTO0309/simple-onnx-processing-tools
### fnms_max_output_boxes_per_class
sam4onnx \
--op_name fnms_nonmaxsuppression11 \
--input_onnx_file_path yolact_edge_mobilenetv2_550x550.onnx \
--output_onnx_file_path yolact_edge_mobilenetv2_550x550.onnx \
--input_constants fnms_max_output_boxes_per_class int64 [10]
### iou_threshold
sam4onnx \
--op_name fnms_nonmaxsuppression11 \
--input_onnx_file_path yolact_edge_mobilenetv2_550x550.onnx \
--output_onnx_file_path yolact_edge_mobilenetv2_550x550.onnx \
--input_constants fnms_iou_threshold float32 [0.6]
### score_threshold
sam4onnx \
--op_name fnms_nonmaxsuppression11 \
--input_onnx_file_path yolact_edge_mobilenetv2_550x550.onnx \
--output_onnx_file_path yolact_edge_mobilenetv2_550x550.onnx \
--input_constants fnms_score_threshold float32 [0.7]
-
INPUTS:
input
:float32 [1, 3, 550, 550]
-
OUTPUTS:
x1y1x2y2_score_class
:float32 [1, N, 6]
N
= The number of objects detected, filtered by NMS, and therefore less than 1600. max_output_boxes_per_class=20 x 80classes6
= x1, y1, x2, y2, score, classid
final_masks
:float32 [N, 138, 138]
N
= The number of objects detected, filtered by NMS, and therefore less than 1600. max_output_boxes_per_class=20 x 80classes
https://github.com/yujin6056/yolactedge-onnx-conversion