-
Notifications
You must be signed in to change notification settings - Fork 355
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adds HotFip.is_compatible() implementaiton.
Isolates HotFlip unit tests. Separates HotFlip integration tests. PiperOrigin-RevId: 481735787
- Loading branch information
1 parent
2443e4a
commit 9b2de92
Showing
3 changed files
with
422 additions
and
309 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,189 @@ | ||
# Copyright 2020 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""Tests for lit_nlp.components.hotflip.""" | ||
|
||
from absl.testing import absltest | ||
from absl.testing import parameterized | ||
from lit_nlp.components import hotflip | ||
# TODO(lit-dev): Move glue_models out of lit_nlp/examples | ||
from lit_nlp.examples.models import glue_models | ||
import numpy as np | ||
|
||
|
||
BERT_TINY_PATH = 'https://storage.googleapis.com/what-if-tool-resources/lit-models/sst2_tiny.tar.gz' # pylint: disable=line-too-long | ||
STSB_PATH = 'https://storage.googleapis.com/what-if-tool-resources/lit-models/stsb_tiny.tar.gz' # pylint: disable=line-too-long | ||
import transformers | ||
BERT_TINY_PATH = transformers.file_utils.cached_path(BERT_TINY_PATH, | ||
extract_compressed_file=True) | ||
STSB_PATH = transformers.file_utils.cached_path(STSB_PATH, | ||
extract_compressed_file=True) | ||
|
||
|
||
_CONFIG_CLASSIFICATION = { | ||
hotflip.FIELDS_TO_HOTFLIP_KEY: ['tokens_sentence'], | ||
hotflip.PREDICTION_KEY: 'probas', | ||
} | ||
_CONFIG_REGRESSION = { | ||
hotflip.FIELDS_TO_HOTFLIP_KEY: ['tokens_sentence1', 'tokens_sentence2'], | ||
hotflip.PREDICTION_KEY: 'score', | ||
hotflip.REGRESSION_THRESH_KEY: 2, | ||
} | ||
|
||
_SST2_EXAMPLE = {'sentence': 'this long movie is terrible.'} | ||
_STSB_EXAMPLE = { | ||
'sentence1': 'this long movie is terrible.', | ||
'sentence2': 'this short movie is great.' | ||
} | ||
|
||
|
||
class HotflipIntegrationTest(parameterized.TestCase): | ||
|
||
def __init__(self, *args, **kwargs): | ||
super(HotflipIntegrationTest, self).__init__(*args, **kwargs) | ||
self.classification_model = glue_models.SST2Model(BERT_TINY_PATH) | ||
self.regression_model = glue_models.STSBModel(STSB_PATH) | ||
|
||
def setUp(self): | ||
super(HotflipIntegrationTest, self).setUp() | ||
self.hotflip = hotflip.HotFlip() | ||
|
||
@parameterized.named_parameters( | ||
('0_examples', 0), | ||
('1_examples', 1), | ||
('2_examples', 2), | ||
) | ||
def test_hotflip_num_ex(self, num_examples: int): | ||
config = _CONFIG_CLASSIFICATION | {hotflip.NUM_EXAMPLES_KEY: num_examples} | ||
counterfactuals = self.hotflip.generate( | ||
_SST2_EXAMPLE, self.classification_model, None, config) | ||
self.assertLen(counterfactuals, num_examples) | ||
|
||
@parameterized.named_parameters( | ||
('0_examples', 0), | ||
('1_examples', 1), | ||
('2_examples', 2), | ||
) | ||
def test_hotflip_num_ex_multi_input(self, num_examples: int): | ||
config = _CONFIG_REGRESSION | {hotflip.NUM_EXAMPLES_KEY: num_examples} | ||
counterfactuals = self.hotflip.generate( | ||
_STSB_EXAMPLE, self.regression_model, None, config) | ||
self.assertLen(counterfactuals, num_examples) | ||
|
||
@parameterized.named_parameters( | ||
('terrible', ['terrible'], [4]), | ||
('long_terrible', ['long', 'terrible'], [1, 4]), | ||
) | ||
def test_hotflip_freeze_tokens( | ||
self, ignore: list[str], exp_indexes: list[int]): | ||
config = _CONFIG_CLASSIFICATION | { | ||
hotflip.NUM_EXAMPLES_KEY: 10, | ||
hotflip.TOKENS_TO_IGNORE_KEY: ignore, | ||
} | ||
|
||
counterfactuals = self.hotflip.generate( | ||
_SST2_EXAMPLE, self.classification_model, None, config) | ||
self.assertEqual(len(ignore), len(exp_indexes)) | ||
for target, index in zip(ignore, exp_indexes): | ||
for counterfactual in counterfactuals: | ||
tokens = counterfactual['tokens_sentence'] | ||
self.assertEqual(target, tokens[index]) | ||
|
||
def test_hotflip_freeze_tokens_multi_input(self): | ||
config = _CONFIG_REGRESSION | { | ||
hotflip.NUM_EXAMPLES_KEY: 10, | ||
hotflip.TOKENS_TO_IGNORE_KEY: ['terrible', 'long'], | ||
} | ||
|
||
counterfactuals = self.hotflip.generate( | ||
_STSB_EXAMPLE, self.regression_model, None, config) | ||
for cf in counterfactuals: | ||
tokens1 = cf['tokens_sentence1'] | ||
tokens2 = cf['tokens_sentence2'] | ||
self.assertEqual('terrible', tokens1[4]) | ||
self.assertEqual('long', tokens1[1]) | ||
self.assertEqual('long', tokens2[1]) | ||
|
||
def test_hotflip_max_flips(self): | ||
config = _CONFIG_CLASSIFICATION | ||
ex = _SST2_EXAMPLE | ||
|
||
ex_output = list(self.classification_model.predict([ex]))[0] | ||
ex_tokens = ex_output['tokens_sentence'] | ||
cfs = self.hotflip.generate(ex, self.classification_model, None, config) | ||
cf_tokens = list(cfs)[0]['tokens_sentence'] | ||
self.assertEqual(1, sum([1 for i, t in enumerate(cf_tokens) | ||
if t != ex_tokens[i]])) | ||
|
||
ex = {'sentence': 'this long movie is terrible and horrible.'} | ||
cfs = self.hotflip.generate(ex, self.classification_model, None, config) | ||
self.assertEmpty(cfs) | ||
|
||
def test_hotflip_max_flips_multi_input(self): | ||
config = _CONFIG_REGRESSION | { | ||
hotflip.MAX_FLIPS_KEY: 1, | ||
hotflip.NUM_EXAMPLES_KEY: 20, | ||
} | ||
ex = _STSB_EXAMPLE | ||
ex_output = list(self.regression_model.predict([ex]))[0] | ||
ex_tokens1 = ex_output['tokens_sentence1'] | ||
ex_tokens2 = ex_output['tokens_sentence2'] | ||
cfs = self.hotflip.generate(ex, self.regression_model, None, config) | ||
for cf in cfs: | ||
# Number of flips in each field should be no more than MAX_FLIPS. | ||
cf_tokens1 = cf['tokens_sentence1'] | ||
cf_tokens2 = cf['tokens_sentence2'] | ||
self.assertLessEqual(sum([1 for i, t in enumerate(cf_tokens1) | ||
if t != ex_tokens1[i]]), 1) | ||
self.assertLessEqual(sum([1 for i, t in enumerate(cf_tokens2) | ||
if t != ex_tokens2[i]]), 1) | ||
|
||
def test_hotflip_only_flip_one_field(self): | ||
config = _CONFIG_REGRESSION | {hotflip.NUM_EXAMPLES_KEY: 10} | ||
ex = _STSB_EXAMPLE | ||
cfs = self.hotflip.generate(ex, self.regression_model, None, config) | ||
for cf in cfs: | ||
self.assertTrue( | ||
(cf['sentence1'] == ex['sentence1']) or | ||
(cf['sentence2'] == ex['sentence2'])) | ||
|
||
def test_hotflip_changes_pred_class(self): | ||
config = _CONFIG_CLASSIFICATION | ||
ex = _SST2_EXAMPLE | ||
|
||
ex_output = list(self.classification_model.predict([ex]))[0] | ||
pred_class = str(np.argmax(ex_output['probas'])) | ||
cfs = self.hotflip.generate(ex, self.classification_model, None, config) | ||
cf_outputs = self.classification_model.predict(cfs) | ||
|
||
self.assertEqual('0', pred_class) | ||
for cf_output in cf_outputs: | ||
self.assertNotEqual(np.argmax(ex_output['probas']), | ||
np.argmax(cf_output['probas'])) | ||
|
||
def test_hotflip_changes_regression_score(self): | ||
config = _CONFIG_REGRESSION | {hotflip.NUM_EXAMPLES_KEY: 2} | ||
ex = _STSB_EXAMPLE | ||
|
||
thresh = config[hotflip.REGRESSION_THRESH_KEY] | ||
ex_output = list(self.regression_model.predict([ex]))[0] | ||
cfs = self.hotflip.generate(ex, self.regression_model, None, config) | ||
cf_outputs = self.regression_model.predict(cfs) | ||
for cf_output in cf_outputs: | ||
self.assertNotEqual((ex_output['score'] <= thresh), | ||
(cf_output['score'] <= thresh)) | ||
|
||
|
||
if __name__ == '__main__': | ||
absltest.main() |
Oops, something went wrong.