-
Notifications
You must be signed in to change notification settings - Fork 0
2UP
Jip Claassens edited this page Jan 16, 2024
·
5 revisions
The 2Up model is a spatially explicit global urbanisation and population growth model.
- i: Land Unit, a 30" x 30" lat long part.
- c: Country
- t: Time step: {2010, 2020, 2030, 2040, 2050, 2060, 2070, 2080}
Static variables
-
Ici: Incidence matrix; for each i:
$\sum\limits_c I^i_c = 1$ - Ai: Area of land unit i
Dynamic variables
-
$\sideset{^t}{_i}S$ : Suitability, a function or combination of spatially explicit suitability factors -
$\sideset{^t}{^c}P$ : Projected population, source: SSP database - Institute of Applied Systems Analysis (IIASA) - 1 -
$\sideset{^t}{^c}D$ : Hyde population density index, source: History Database of the Global Environment - Klein Goldewijk, Dr. ir. C.G.M. (Utrecht University) (2017): Anthropogenic land-use estimates for the Holocene; HYDE 3.2. DANS. 2 -
$\sideset{^t}{^c}C$ : Urban Claim
Urban Claim
$\sideset{^t}{^c}U := \sideset{^{2010}}{^c}U \cdot {\sideset{^t}{^c}P \over \sideset{^{2010}}{^c}P} \cdot {\sideset{^{2010}}{^c}D \over \sideset{^t}{^c}D}$ -
$\sideset{^t}{^c}C := \min(\sideset{^t}{^c}U, \sum\limits_i{A_i \cdot I^i_c})$ Claim is U, but no more than the available land
Urban Spatial Allocation
-
Xi ∈ {0, 1} such that
∑Si ⋅ Xi is maximal and that for each
c:
$\sum\limits_i X_i \cdot A_i \cdot I^i_c = C^c$ where Xi = 1 represents projected urban land use.
This allocation is done by taking the
Projected population growth
$\sideset{^t}{_i}{MD} := \max\left(\sqrt{\sum\limits_{j \in W(i)} \left( \sideset{^{t-1}}{_i}P \over A_i \right)^2 \cdot \sideset{^t}{_i}X \cdot {dd}_{ij} \over \sum\limits_{j \in W(i)} \sideset{^t}{_i}X \cdot {dd}_{ij}}, \sum\limits_c { I^i_c \cdot {\sum\limits_i \sideset{^{t-1}}{_i}P \cdot \sideset{^t}{_i}X \cdot I^i_c \over \sum\limits_i A_i \cdot \sideset{^t}{_i}X \cdot I^i_c} } \right)$ - ddij: distance decay function.
- W(i): A window around land unit i such that ddij ≠ 0 ⟹ j ∈ W(i).
If
$\sideset{^t}{_i}\Delta := \sum\limits_c I^i_c \cdot \sideset{^t}{^c}{EP} \cdot { \sideset{^t}{_i}S \cdot A_i \cdot \sideset{^t}{_i}X \cdot (\sideset{^{t-1}}{_i}P < \sideset{^{t-1}}{_i}{MD} * A_i ) \over \sum\limits_i I^i_c \cdot \sideset{^t}{_i}S \cdot A_i \cdot \sideset{^t}{_i}X \cdot (\sideset{^{t-1}}{_i}P < \sideset{^{t-1}}{_i}{MD} * A_i ) }$
Land use modelling documentation
© Object Vision BV