Skip to content

Image Generation and Object Replacement using Stable Diffusion 3.5

Notifications You must be signed in to change notification settings

Nilotlawl/Stablediffusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Image Inpainting and Object Replacement

This project utilizes advanced deep learning models to replace objects in images using Stable Diffusion and Segment Anything Model (SAM). The result is an AI-generated image where a specified object is replaced by a new object described through a textual prompt.


Output Example

The program generates results like this:

Output Example


Features

  1. Automatically identifies objects in the input image using SAM.
  2. Generates a mask for the selected object.
  3. Replaces the object with a new one using the Stable Diffusion inpainting pipeline.
  4. Displays the original image, mask, and final result side-by-side.

Setup Instructions

1. Clone the Repository

$ git clone <repository_url>
$ cd <repository_name>

2. Create a Virtual Environment

$ python -m venv venv
$ source venv/bin/activate  # For Linux/Mac
$ venv\Scripts\activate   # For Windows

3. Install Dependencies

$ pip install -r requirements.txt

Usage

Steps to Run

  1. Download the SAM Model:

    • The script will automatically download the required SAM model weights.
  2. Provide Input Parameters:

    • Image Path or URL: Path to the image you want to edit.
    • Target Object: Description of the object to replace (e.g., "person").
    • Replacement Prompt: Text describing the object to replace with (e.g., "Two people wearing spacesuits standing in a green mountainous landscape").
  3. Run the Script:

$ python script.py
  1. Output:
    • Displays the original image, generated mask, and final result.

Dependencies

This project uses the following packages:

  • torch (2.5.1+cu124)
  • torchvision (0.20.1+cu124)
  • torchaudio (2.5.1+cu124)
  • diffusers (0.31.0)
  • transformers (4.47.1)
  • segment-anything (1.0)
  • numpy (2.2.0)
  • matplotlib (3.10.0)
  • opencv-python (4.10.0.84)
  • Pillow (11.0.0)
  • requests (2.32.3)

See requirements.txt for the complete list of dependencies and their versions.


requirements.txt

Below is the content for requirements.txt:

accelerate==1.2.1
certifi==2024.12.14
charset-normalizer==3.4.0
colorama==0.4.6
contourpy==1.3.1
cycler==0.12.1
diffusers==0.31.0
filelock==3.16.1
fonttools==4.55.3
fsspec==2024.12.0
huggingface-hub==0.27.0
idna==3.10
importlib_metadata==8.5.0
Jinja2==3.1.4
kiwisolver==1.4.7
MarkupSafe==3.0.2
matplotlib==3.10.0
mpmath==1.3.0
networkx==3.4.2
numpy==2.2.0
opencv-python==4.10.0.84
packaging==24.2
pillow==11.0.0
pip==24.3.1
psutil==6.1.1
pyparsing==3.2.0
python-dateutil==2.9.0.post0
PyYAML==6.0.2
regex==2024.11.6
requests==2.32.3
safetensors==0.4.5
segment-anything==1.0
setuptools==65.5.0
six==1.17.0
sympy==1.13.1
tokenizers==0.21.0
torch==2.5.1+cu124
torchaudio==2.5.1+cu124
torchvision==0.20.1+cu124
tqdm==4.67.1
transformers==4.47.1
typing_extensions==4.12.2
urllib3==2.2.3
zipp==3.21.0

References


(Might show black image as a result of the model)

About

Image Generation and Object Replacement using Stable Diffusion 3.5

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages