Skip to content

EEG Confusion Classification of Students in Online Classroom Learning

Notifications You must be signed in to change notification settings

NgHanWei/EEG_Confusion_MOOC

Repository files navigation

Plug-and-Play EEG-Based Student Confusion Classification in Massive Online Open Courses (AIED 2023)

https://link.springer.com/chapter/10.1007/978-3-031-36272-9_57

Codes for running analysis on students' confusion levels via EEG-based deep neural network classsification. The leave-one-subject-and-video-out (LOSVO) paradigm is introduced here as a means to accurately simulate a plug-and-play implementation of the proposed classification framework into real-world classrooms.

Results Overview

Non-Normalized EEG Data

Videos 1 2 3 4 5 6 7 8 9 10 Average
Subject 1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
2 100.00 72.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.00 86.90
3 100.00 91.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 83.00 97.40
4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 86.00 98.60
5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
6 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
7 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 100.00 90.00
8 100.00 100.00 100.00 64.00 100.00 100.00 100.00 100.00 0.00 100.00 86.40
9 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 82.00 98.20
Average 100.00 96.30 100.00 96.40 100.00 100.00 100.00 90.00 80.00 94.80 95.75

Normalized EEG Data

Videos 1 2 3 4 5 6 7 8 9 10 Average
Subject 1 62.00 100.00 100.00 48.00 65.00 100.00 100.00 95.00 100.00 100.00 87.00
2 95.00 100.00 100.00 100.00 97.00 100.00 100.00 88.00 76.00 87.00 94.30
3 97.00 95.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.20
4 100.00 100.00 100.00 97.00 100.00 100.00 100.00 100.00 100.00 86.00 99.70
5 35.00 100.00 100.00 100.00 100.00 82.00 100.00 100.00 88.00 100.00 90.50
6 95.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.50
7 70.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 94.00 96.40
8 100.00 100.00 100.00 96.00 100.00 42.00 100.00 100.00 100.00 100.00 93.80
9 100.00 100.00 100.00 46.00 100.00 100.00 100.00 100.00 100.00 100.00 94.60
10 13.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 95.00 90.80
Average 76.70 99.50 100.00 88.70 96.20 92.40 100.00 98.30 96.40 97.60 94.58

Resources

Dataset: Link

EEGNet Framework: Link

Dependencies

Run

Subject-and-Video-Independent

Download the input folder from the dataset link (requires a Kaggle account) and put in the main folder directory along with the code. Otherwise, simply download the data from this repository.

usage: python LOSVO_DCN.py [-vid VID] [-subj SUBJ] [--normalize]

Trains and Evaluates a binary classifier for students' confusion levels based on the EEGNet framework under the leave-one-subject-and-video-out (LOSVO) paradigm.

Required Arguments:
    -vid VID                            Set the video ID which data will be removed from training the classifier
    -subj SUBJ                          Set the subject whose data will be removed from training the classifier

Optional Arguments:
    --normalize                         Default is set to false, utilize this argument to normalize the EEG data

For example, to obtain the accuracy of subject 5 for video 5 with normalization on EEG data, the following code can be run

python LOSVO_DCN.py -vid 5 -subj 5 --normalize

Or without normalization:

python LOSVO_DCN.py -vid 5 -subj 5

Alternatively, to obtain the LOSVO accuracy for all subjects for each individual video, run LOSVO_DCN_all.py, with the option to normalize the EEG data using the normalize argument --normalize.

python LOSVO_DCN_all.py --normalize

Subject-Independent and Video-Independent

Likewise, subject-independent and video-independent models are available for testing.

Subject-independent:

python LOSO_DCN.py -subj SUBJ --normalize

Video-independent:

python LOVO_DCN.py -vid VID --normalize

About

EEG Confusion Classification of Students in Online Classroom Learning

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages