Skip to content

Image classification using deep learning models with activation map visualisation and TensorRT support

License

Notifications You must be signed in to change notification settings

NeelBhowmik/imfication

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Image 1 Image 2

Imfication: A simple image classification framework supporting various Deep-learning architectures

🐜 [Installation] [Getting started] [Reference]

🦜 Features

  • Scripts for train,test,inference - run on custom dataset.
  • Integrated explainable AI / various activation maps (gradcam, etc) during inference.
  • Support demo or inference using inputs: image, video, webcam/usb plugged camera.
  • Run on resource starved nvidia embedded devices.

👾 This repo is constantly updated with the latest algorithms and new features - check in regularly for updates!

Upcoming

  • [~] TensorRT support during test and inference.

🔧 Installation

  1. [Optional] create a new virtual environment.

    sudo apt update
    sudo apt install python3-dev python3-pip
    

    And activate the environment.

    source ./venv/bin/activate # sh, bash, ksh, or zsh
    
  2. First clone the repository:

    git clone https://github.com/NeelBhowmik/imfication.git
    
  3. Install pytorch with torchvision - link.

  4. Install the requirements

    pip3 install -r requirements.txt
    

🍽️ Getting started:

Following is a guide on how to get started with imfication.

🕸️ Preparing Dataset

Create/oraganise dataset in the following structure:

dataset
    |_train
    |   |_cls1
    |   |   |_img11
    |   |   |_img21
    |   |_cls2
    |       |_img21
    |       |_img22
    |
    |_test
        |_cls1
        |   |_img14
        |   |_img25
        |_cls2
            |_img24
            |_img25

🫕 Training

Get ready to embark on the training journey! Use train script to train cnn architectures on the custom dataset.

Run the train.py with different command line options:

train.py [-h] [--db DB] [--dbpath DBPATH] [--dbsplit DBSPLIT]
            [--net {resnet18,resnet34,resnet50,resnet101,vgg16,vgg19,alexnet,squeezenetdensenet,shufflenet,mobilenet_v2,mnasnet}]
            [--optim OPTIM] [--ft] [--pretrained] [--lr LR] [--momentum MOMENTUM] [--weight_decay WEIGHT_DECAY]
            [--custom_weight CUSTOM_WEIGHT] [--batch BATCH] [--ichannel ICHANNEL] [--isize ISIZE] [--epoch EPOCH]
            [--save_freq SAVE_FREQ] [--cpu] [--workers WORKERS] [--work_dir WORK_DIR]

options:
-h, --help            show this help message and exit
--db DB               specify the dataset name
--dbpath DBPATH       specify the dataset directory path
--dbsplit DBSPLIT     specify the dataset dataset split
--net {resnet18,resnet34,resnet50,resnet101,vgg16,vgg19,alexnet,squeezenetdensenet,shufflenet,mobilenet_v2,mnasnet}
                        select the network
--optim OPTIM         select optimizer {SGD, Adam}
--ft                  if true - only update the reshaped layer paramsif flase - traning from scratch
--pretrained          use ImageNet pretrained weight.
--lr LR               initial learning rate for opimisation
--momentum MOMENTUM   momentum term of optimisation
--weight_decay WEIGHT_DECAY
                        weight decay term of optimisation
--custom_weight CUSTOM_WEIGHT
                        custom weight file path to finetune
--batch BATCH         input training batch size
--ichannel ICHANNEL   input data channel number
--isize ISIZE         input data size
--epoch EPOCH         number of traning epoch
--save_freq SAVE_FREQ
                        save model weight interval
--cpu                 if selected will run on CPU
--workers WORKERS     number of data loading workers
--work_dir WORK_DIR   a directory path to save model output

🔬 Testing

It's time to put our model to the test! Use test script to get detail statistical analysis/results.

Run the test.py with different command line options:

test.py [-h] [--db DB] [--dbpath DBPATH] [--dbsplit DBSPLIT]
            [--net {resnet18,resnet34,resnet50,resnet101,vgg16,vgg19,alexnet,squeezenetdensenet,shufflenet,mobilenet_v2,mnasnet}]
            [--weight WEIGHT] [--batch BATCH] [--isize ISIZE] [--cpu] [--trt] [--workers WORKERS] [--statf STATF]

options:
-h, --help            show this help message and exit
--db DB               specify dataset name
--dbpath DBPATH       specify the dataset directory path
--dbsplit DBSPLIT     specify the dataset dataset split
--net {resnet18,resnet34,resnet50,resnet101,vgg16,vgg19,alexnet,squeezenetdensenet,shufflenet,mobilenet_v2,mnasnet}
                        select the network {alexnet,resnet50,...}
--weight WEIGHT       path to model weight file
--batch BATCH         input testing batch size
--isize ISIZE         input data size
--cpu                 if selected will run on CPU
--trt                 if selected will run on TensorRT
--workers WORKERS     number of data loading workers
--statf STATF         a directory path to save test statistics

🎩 Inference

Ready to showcase the magic of your trained model? Use inference script for live demo. Supported inputs: image, video, webcam/usb plugged camera.

Run the inference.py with different command line options:

inference.py [-h] [--image IMAGE] [--video VIDEO] [--webcam] [--camera_to_use CAMERA_TO_USE] [--trt]
                [--net {resnet18,resnet34,resnet50,resnet101,vgg16,vgg19,alexnet,squeezenetdensenet,shufflenet,mobilenet_v2,mnasnet}]
                [--weight WEIGHT] [--cls_name CLS_NAME] [--conf_thrs CONF_THRS]
                [--activemap {gradcam,gradcam++,scorecam,xgradcam,ablationcam,eigencam,eigengradcam}] [--cpu]
                [--output OUTPUT] [--show] [-fs]

options:
-h, --help            show this help message and exit
--image IMAGE         Path to image file or image directory
--video VIDEO         Path to video file or video directory
--webcam              Take inputs from webcam
--camera_to_use CAMERA_TO_USE
                        Specify camera to use for webcam option
--trt                 Model run on TensorRT
--net {resnet18,resnet34,resnet50,resnet101,vgg16,vgg19,alexnet,squeezenetdensenet,shufflenet,mobilenet_v2,mnasnet}
                        select the network
--weight WEIGHT       Model weight file path
--cls_name CLS_NAME   class names - accept below formats: 1. - separated: n0-n1-n2 2. class name textfile containing:
                        1-class name in a line
--conf_thrs CONF_THRS
                        classification confidence threshold [0-1]
--activemap {gradcam,gradcam++,scorecam,xgradcam,ablationcam,eigencam,eigengradcam}
                        visualise class activation map using gradcam based methods
--cpu                 if selected will run on CPU
--output OUTPUT       a directory path to save output visualisations.
--show                whether show the results on the fly on an OpenCV window.
-fs, --fullscreen     run in full screen mode

🐸 Reference

If you use this repo and like it, use this to cite it:

@misc{imfication,
      title={Imfication: A simple image classification framework supporting various Deep-learning architectures},
      author={Neelanjan Bhowmik},
      year={2024},
      url={https://github.com/NeelBhowmik/imfication}
    }