Skip to content

NathOrmond/stats-notebook

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Statistics and Probability Notebooks

This repository contains interactive Jupyter notebooks exploring fundamental concepts in statistics, probability theory, and related mathematical foundations.

Project Structure

notebooks/
├── intro/
│   ├── calculus/
│   │   ├── 01_calculus_overview.ipynb
│   │   ├── 02_integration.ipynb
│   │   └── 03_differentiation.ipynb
│   ├── combinatorics/
│   │   ├── 01_counting.ipynb
│   │   ├── 02_permutations.ipynb
│   │   ├── 03_selections.ipynb
│   │   ├── 04_pigenhole_principle.ipynb
│   │   └── 05_overview.ipynb
│   ├── probability/
│   │   ├── decision_theory/
│   │   │   ├── 01_weighted_average.ipynb
│   │   │   └── 02_expected_value.ipynb
│   │   ├── distributions/
│   │   │   ├── geometric_distribution.ipynb
│   │   │   ├── poisson_distribution.ipynb
│   │   │   └── uniform_distribution.ipynb
│   │   ├── measures/
│   │   │   └── 01_intro_to_measures.ipynb
│   │   └── rules/
│   │       ├── 01_basics.ipynb
│   │       ├── 02_bayes.ipynb
│   │       └── 03_random_variables.ipynb
│   ├── set-theory/
│   └── statistics/

Topics Covered

Mathematical Foundations

  • Calculus: Essential calculus concepts
  • Set Theory: Foundation for probability spaces
  • Combinatorics: Counting principles and methods

Core Probability Theory

  • Fundamental Rules: Basic probability axioms and rules
  • Random Variables: Properties and transformations
  • Bayes' Theorem: Conditional probability and applications

Probability Distributions

  • Uniform Distribution
  • Geometric Distribution
  • Poisson Distribution

Advanced Topics

  • Measure Theory: Mathematical foundations
  • Decision Theory:
    • Weighted averages
    • Expected value calculations

Statistical Methods (Planned)

  • Descriptive statistics
  • Inferential statistics
  • Hypothesis testing
  • Confidence intervals
  • Regression analysis

Features

  • Interactive visualizations using ipywidgets
  • Real-world examples and applications
  • Theoretical foundations and proofs
  • Practice problems and solutions
  • Links to additional resources

Setup

  1. Create Conda environment:
conda create --name stats_notebooks python=3.x
conda activate stats_notebooks
  1. Install required packages:
conda install jupyter numpy scipy matplotlib ipywidgets
  1. Register the kernel:
python -m ipykernel install --user --name=stats_notebooks

Usage

Start JupyterLab:

jupyter lab

note You may need to run jupyter lab --allow-root

Navigate to the desired notebook in the notebooks/ directory. It's recommended to start with foundational topics in calculus and set theory before progressing to probability concepts.

Prerequisites

  • Basic calculus understanding
  • Familiarity with set notation
  • Basic Python programming skills

Contributing

Feel free to:

  • Report issues or bugs
  • Suggest improvements
  • Submit pull requests
  • Request additional topics

Resources

Recommended Reading

  • [Add recommended textbooks]
  • [Add online courses]
  • [Add reference materials]

Online References

  • [Add helpful links]
  • [Add documentation links]
  • [Add tutorial links]

License

MIT

Author

Nathan Ormond


This repository is actively developed. Topics and structure will evolve as the collection grows.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published