Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for LogitsTemperatureScaler in the new ModelOutput API #815

Merged
merged 2 commits into from
Oct 24, 2022

Conversation

sararb
Copy link
Contributor

@sararb sararb commented Oct 20, 2022

Goals:

  • As a follow-up to the fixes needed to reproduce the research scripts with the new API (see Add L2-batch regularization to EmbeddingTable #812 and Add LogQ correction support to the new ModelOutput API #811), I defined integration tests for TwoTower and MatrixFactorization. I observed that TwoTower is still returning a smaller validation performance compared to the old API.

  • After debugging, the issue is now related to LogitsTemperatureScaler not including the logic of scaling the logits if the class variable apply_on_call_outputs is set to True (which is the default).

  • In fact, the logits scaler in ModelOutput is set here with the default value True, so the logits are never scaled with the provided temperature.

  • apply_on_call_outputs is specific to Merlin supporting two versions of the API so I believe we should not expose this argument to the user. It might be confusing for the user to understand when to set apply_on_call_outputs to True or False.

  • So I refactored LogitsTemperatureScaler to have similar logic we have in PopularityLogitsCorrection

  • Figures below show the 3 runs of integration tests: Old API, New API, New API with logit scaler fix

Screen Shot 2022-10-20 at 12 29 55 PM

image

Implementation Details 🚧

  • Add a copy_with_updates to the Prediction NamedTuple class to update only necessary tensors in the post transforms blocks.
  • Make sure the ModelOutputBase is always returning a Prediction object.
  • Add applying logits-temperature inside the call method of the LogitsTemperatureScaler block.
  • Add get_config method to LogitsTemperatureScaler to store the value temperature when saving the model.

Testing Details 🔍

  • Add test of logit scaler with different temperatures in outputs/test_base.py`

@sararb sararb added this to the Merlin 22.11 milestone Oct 20, 2022
@sararb sararb self-assigned this Oct 20, 2022
@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #815 of commit 6ebbb78330f12a3e5bc47283faccee5d6fda506f, no merge conflicts.
Running as SYSTEM
Setting status of 6ebbb78330f12a3e5bc47283faccee5d6fda506f to PENDING with url https://10.20.13.93:8080/job/merlin_models/1552/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/815/*:refs/remotes/origin/pr/815/* # timeout=10
 > git rev-parse 6ebbb78330f12a3e5bc47283faccee5d6fda506f^{commit} # timeout=10
Checking out Revision 6ebbb78330f12a3e5bc47283faccee5d6fda506f (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 6ebbb78330f12a3e5bc47283faccee5d6fda506f # timeout=10
Commit message: "fix logit scaler for new ModelOutput API"
 > git rev-list --no-walk 36292c0ed34cdbc9c5d610ccd896e4ea09fd32ec # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins7044676518061846842.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: traitlets>=5.1 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (5.4.0)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: importlib-resources>=1.4.0; python_version < "3.9" in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10; python_version < "3.9" in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: zipp>=3.1.0; python_version < "3.10" in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0; python_version < "3.9"->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.6.1, xdist-2.5.0, forked-1.4.0, cov-4.0.0
collected 775 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py ...... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 6%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 8%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 9%]
tests/unit/tf/blocks/test_interactions.py ... [ 9%]
tests/unit/tf/blocks/test_mlp.py ................................. [ 13%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 18%]
..................... [ 20%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 21%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 21%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 22%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 22%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 23%]
tests/unit/tf/core/test_aggregation.py ......... [ 24%]
tests/unit/tf/core/test_base.py .. [ 24%]
tests/unit/tf/core/test_combinators.py s.................... [ 27%]
tests/unit/tf/core/test_encoder.py .. [ 27%]
tests/unit/tf/core/test_index.py ... [ 27%]
tests/unit/tf/core/test_prediction.py .. [ 28%]
tests/unit/tf/core/test_tabular.py ...... [ 28%]
tests/unit/tf/examples/test_01_getting_started.py . [ 29%]
tests/unit/tf/examples/test_02_dataschema.py . [ 29%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 29%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 29%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 29%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 29%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 29%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py F [ 29%]
[ 29%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py . [ 30%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 30%]
tests/unit/tf/inputs/test_continuous.py ..... [ 30%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 35%]
....... [ 36%]
tests/unit/tf/inputs/test_tabular.py .................. [ 38%]
tests/unit/tf/layers/test_queue.py .............. [ 40%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 43%]
tests/unit/tf/metrics/test_metrics_topk.py ........................ [ 46%]
tests/unit/tf/models/test_base.py s....................... [ 49%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 54%]
tests/unit/tf/models/test_retrieval.py ................................ [ 58%]
tests/unit/tf/outputs/test_base.py ...... [ 59%]
tests/unit/tf/outputs/test_classification.py ...... [ 60%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 62%]
tests/unit/tf/outputs/test_regression.py .. [ 62%]
tests/unit/tf/outputs/test_sampling.py .... [ 62%]
tests/unit/tf/outputs/test_topk.py . [ 62%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 63%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 65%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 65%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 66%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 66%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 67%]
tests/unit/tf/transformers/test_block.py .................... [ 70%]
tests/unit/tf/transformers/test_transforms.py ...... [ 70%]
tests/unit/tf/transforms/test_bias.py .. [ 71%]
tests/unit/tf/transforms/test_features.py s............................. [ 74%]
....................s...... [ 78%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 79%]
tests/unit/tf/transforms/test_noise.py ..... [ 80%]
tests/unit/tf/transforms/test_sequence.py .................... [ 82%]
tests/unit/tf/transforms/test_tensor.py ... [ 83%]
tests/unit/tf/utils/test_batch.py .... [ 83%]
tests/unit/tf/utils/test_dataset.py .. [ 84%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 84%]
tests/unit/torch/test_dataset.py ......... [ 85%]
tests/unit/torch/test_public_api.py . [ 85%]
tests/unit/torch/block/test_base.py .... [ 86%]
tests/unit/torch/block/test_mlp.py . [ 86%]
tests/unit/torch/features/test_continuous.py .. [ 86%]
tests/unit/torch/features/test_embedding.py .............. [ 88%]
tests/unit/torch/features/test_tabular.py .... [ 89%]
tests/unit/torch/model/test_head.py ............ [ 90%]
tests/unit/torch/model/test_model.py .. [ 90%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 92%]
tests/unit/torch/tabular/test_tabular.py ... [ 92%]
tests/unit/torch/tabular/test_transformations.py ....... [ 93%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=================================== FAILURES ===================================
_________________ test_usecase_accelerate_training_by_lazyadam _________________

tb = <testbook.client.TestbookNotebookClient object at 0x7fcc9ab9b670>

@testbook(
    REPO_ROOT / p,
    timeout=180,
    execute=False,
)
def test_usecase_accelerate_training_by_lazyadam(tb):
    tb.inject(
        """
        import os
        os.environ["NUM_ROWS"] = "1000"
        """
    )
  tb.execute()

tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py:22:


/usr/local/lib/python3.8/dist-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
/usr/local/lib/python3.8/dist-packages/nbclient/util.py:85: in wrapped
return just_run(coro(*args, **kwargs))
/usr/local/lib/python3.8/dist-packages/nbclient/util.py:60: in just_run
return loop.run_until_complete(coro)
/usr/lib/python3.8/asyncio/base_events.py:616: in run_until_complete
return future.result()
/usr/local/lib/python3.8/dist-packages/nbclient/client.py:1025: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7fcc9ab9b670>
cell = {'cell_type': 'code', 'execution_count': 7, 'id': '0500ad25-29e0-40c8-85bc-6e3864107c6a', 'metadata': {'execution': {'...e_train_function_3849]']}], 'source': 'model1.compile(optimizer="adam")\nmodel1.fit(train, batch_size=1024, epochs=1)'}
cell_index = 12
exec_reply = {'buffers': [], 'content': {'ename': 'ResourceExhaustedError', 'engine_info': {'engine_id': -1, 'engine_uuid': '74f0f5...e, 'engine': '74f0f506-94a2-412f-809b-86cb0b016fa3', 'started': '2022-10-20T18:38:28.764793Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(
        self.on_cell_error, cell=cell, cell_index=cell_index, execute_reply=exec_reply
    )
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E model1.compile(optimizer="adam")
E model1.fit(train, batch_size=1024, epochs=1)
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mResourceExhaustedError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [7], line 2�[0m
E �[1;32m 1�[0m model1�[38;5;241m.�[39mcompile(optimizer�[38;5;241m=�[39m�[38;5;124m"�[39m�[38;5;124madam�[39m�[38;5;124m"�[39m)
E �[0;32m----> 2�[0m �[43mmodel1�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mtrain�[49m�[43m,�[49m�[43m �[49m�[43mbatch_size�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1024�[39;49m�[43m,�[49m�[43m �[49m�[43mepochs�[49m�[38;5;241;43m=�[39;49m�[38;5;241;43m1�[39;49m�[43m)�[49m
E
E File �[0;32m~/workspace/merlin_models/models/merlin/models/tf/models/base.py:831�[0m, in �[0;36mBaseModel.fit�[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing, train_metrics_steps, pre, **kwargs)�[0m
E �[1;32m 828�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_reset_compile_cache()
E �[1;32m 829�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre �[38;5;241m=�[39m pre
E �[0;32m--> 831�[0m out �[38;5;241m=�[39m �[38;5;28;43msuper�[39;49m�[43m(�[49m�[43m)�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[38;5;241;43m�[39;49m�[38;5;241;43m�[39;49m�[43mfit_kwargs�[49m�[43m)�[49m
E �[1;32m 833�[0m �[38;5;28;01mif�[39;00m pre:
E �[1;32m 834�[0m �[38;5;28;01mdel�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtrain_pre
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py:67�[0m, in �[0;36mfilter_traceback..error_handler�[0;34m(*args, **kwargs)�[0m
E �[1;32m 65�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e: �[38;5;66;03m# pylint: disable=broad-except�[39;00m
E �[1;32m 66�[0m filtered_tb �[38;5;241m=�[39m process_traceback_frames(e�[38;5;241m.�[39m__traceback_)
E �[0;32m---> 67�[0m �[38;5;28;01mraise�[39;00m e�[38;5;241m.�[39mwith_traceback(filtered_tb) �[38;5;28;01mfrom�[39;00m �[38;5;28mNone�[39m
E �[1;32m 68�[0m �[38;5;28;01mfinally�[39;00m:
E �[1;32m 69�[0m �[38;5;28;01mdel�[39;00m filtered_tb
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/tensorflow/python/eager/execute.py:54�[0m, in �[0;36mquick_execute�[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)�[0m
E �[1;32m 52�[0m �[38;5;28;01mtry�[39;00m:
E �[1;32m 53�[0m ctx�[38;5;241m.�[39mensure_initialized()
E �[0;32m---> 54�[0m tensors �[38;5;241m=�[39m pywrap_tfe�[38;5;241m.�[39mTFE_Py_Execute(ctx�[38;5;241m.�[39m_handle, device_name, op_name,
E �[1;32m 55�[0m inputs, attrs, num_outputs)
E �[1;32m 56�[0m �[38;5;28;01mexcept�[39;00m core�[38;5;241m.�[39m_NotOkStatusException �[38;5;28;01mas�[39;00m e:
E �[1;32m 57�[0m �[38;5;28;01mif�[39;00m name �[38;5;129;01mis�[39;00m �[38;5;129;01mnot�[39;00m �[38;5;28;01mNone�[39;00m:
E
E �[0;31mResourceExhaustedError�[0m: Graph execution error:
E
E Detected at node 'Adam/Adam/update_17/mul_4' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/usr/local/lib/python3.8/dist-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_32103/3741080137.py", line 2, in
E model1.fit(train, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 831, in fit
E out = super().fit(**fit_kwargs)
E File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 658, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/adam.py", line 214, in _resource_apply_sparse
E v_t = tf.compat.v1.assign(v, v * coefficients['beta_2_t'],
E Node: 'Adam/Adam/update_17/mul_4'
E Detected at node 'Adam/Adam/update_17/mul_4' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/usr/local/lib/python3.8/dist-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_32103/3741080137.py", line 2, in
E model1.fit(train, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 831, in fit
E out = super().fit(**fit_kwargs)
E File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 658, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/adam.py", line 214, in _resource_apply_sparse
E v_t = tf.compat.v1.assign(v, v * coefficients['beta_2_t'],
E Node: 'Adam/Adam/update_17/mul_4'
E 2 root error(s) found.
E (0) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_17/mul_4}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E [[StatefulPartitionedCall/cond/pivot_t/_131/_53]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E (1) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_17/mul_4}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E 0 successful operations.
E 0 derived errors ignored. [Op:__inference_train_function_3849]
E ResourceExhaustedError: Graph execution error:
E
E Detected at node 'Adam/Adam/update_17/mul_4' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/usr/local/lib/python3.8/dist-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_32103/3741080137.py", line 2, in
E model1.fit(train, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 831, in fit
E out = super().fit(**fit_kwargs)
E File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 658, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/adam.py", line 214, in _resource_apply_sparse
E v_t = tf.compat.v1.assign(v, v * coefficients['beta_2_t'],
E Node: 'Adam/Adam/update_17/mul_4'
E Detected at node 'Adam/Adam/update_17/mul_4' defined at (most recent call last):
E File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
E return _run_code(code, main_globals, None,
E File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
E exec(code, run_globals)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel_launcher.py", line 17, in
E app.launch_new_instance()
E File "/usr/local/lib/python3.8/dist-packages/traitlets/config/application.py", line 978, in launch_instance
E app.start()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelapp.py", line 712, in start
E self.io_loop.start()
E File "/usr/local/lib/python3.8/dist-packages/tornado/platform/asyncio.py", line 215, in start
E self.asyncio_loop.run_forever()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 570, in run_forever
E self._run_once()
E File "/usr/lib/python3.8/asyncio/base_events.py", line 1859, in _run_once
E handle._run()
E File "/usr/lib/python3.8/asyncio/events.py", line 81, in _run
E self._context.run(self._callback, *self._args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 510, in dispatch_queue
E await self.process_one()
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 499, in process_one
E await dispatch(*args)
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 406, in dispatch_shell
E await result
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/kernelbase.py", line 730, in execute_request
E reply_content = await reply_content
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/ipkernel.py", line 383, in do_execute
E res = shell.run_cell(
E File "/usr/local/lib/python3.8/dist-packages/ipykernel/zmqshell.py", line 528, in run_cell
E return super().run_cell(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2885, in run_cell
E result = self._run_cell(
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 2940, in _run_cell
E return runner(coro)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/async_helpers.py", line 129, in pseudo_sync_runner
E coro.send(None)
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3139, in run_cell_async
E has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3318, in run_ast_nodes
E if await self.run_code(code, result, async
=asy):
E File "/usr/local/lib/python3.8/dist-packages/IPython/core/interactiveshell.py", line 3378, in run_code
E exec(code_obj, self.user_global_ns, self.user_ns)
E File "/tmp/ipykernel_32103/3741080137.py", line 2, in
E model1.fit(train, batch_size=1024, epochs=1)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 831, in fit
E out = super().fit(**fit_kwargs)
E File "/usr/local/lib/python3.8/dist-packages/keras/utils/traceback_utils.py", line 64, in error_handler
E return fn(*args, **kwargs)
E File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1409, in fit
E tmp_logs = self.train_function(iterator)
E File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1051, in train_function
E return step_function(self, iterator)
E File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1040, in step_function
E outputs = model.distribute_strategy.run(run_step, args=(data,))
E File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1030, in run_step
E outputs = model.train_step(data)
E File "/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/models/base.py", line 658, in train_step
E self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 539, in minimize
E return self.apply_gradients(grads_and_vars, name=name)
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 678, in apply_gradients
E return tf.internal.distribute.interim.maybe_merge_call(
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 723, in _distributed_apply
E update_op = distribution.extended.update(
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 701, in apply_grad_to_update_var
E return self._resource_apply_sparse_duplicate_indices(
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/optimizer_v2.py", line 1326, in _resource_apply_sparse_duplicate_indices
E return self._resource_apply_sparse(summed_grad, handle, unique_indices,
E File "/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/adam.py", line 214, in _resource_apply_sparse
E v_t = tf.compat.v1.assign(v, v * coefficients['beta_2_t'],
E Node: 'Adam/Adam/update_17/mul_4'
E 2 root error(s) found.
E (0) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_17/mul_4}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E [[StatefulPartitionedCall/cond/pivot_t/_131/_53]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E (1) RESOURCE_EXHAUSTED: failed to allocate memory
E [[{{node Adam/Adam/update_17/mul_4}}]]
E Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
E
E 0 successful operations.
E 0 derived errors ignored. [Op:__inference_train_function_3849]

/usr/local/lib/python3.8/dist-packages/nbclient/client.py:919: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-10-20 18:38:24.988324: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-10-20 18:38:27.310684: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 0
2022-10-20 18:38:27.310827: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 1627 MB memory: -> device: 0, name: Tesla P100-DGXS-16GB, pci bus id: 0000:07:00.0, compute capability: 6.0
2022-10-20 18:38:27.311499: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:222] Using CUDA malloc Async allocator for GPU: 1
2022-10-20 18:38:27.311554: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1532] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13851 MB memory: -> device: 1, name: Tesla P100-DGXS-16GB, pci bus id: 0000:08:00.0, compute capability: 6.0
2022-10-20 18:38:38.825570: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 1083564064 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 884539392/17069309952
2022-10-20 18:38:38.825632: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 1706033152
InUse: 4225294840
MaxInUse: 4225294840
NumAllocs: 229
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-10-20 18:38:38.825651: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-10-20 18:38:38.825660: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 4
2022-10-20 18:38:38.825668: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 34
2022-10-20 18:38:38.825674: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 7
2022-10-20 18:38:38.825681: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 40, 2
2022-10-20 18:38:38.825687: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 6
2022-10-20 18:38:38.825693: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 6
2022-10-20 18:38:38.825699: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 4
2022-10-20 18:38:38.825705: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 7
2022-10-20 18:38:38.825711: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 3
2022-10-20 18:38:38.825717: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 4
2022-10-20 18:38:38.825723: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-10-20 18:38:38.825729: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 5
2022-10-20 18:38:38.825736: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 61440, 3
2022-10-20 18:38:38.825742: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 65536, 3
2022-10-20 18:38:38.825748: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 5
2022-10-20 18:38:38.825755: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 3
2022-10-20 18:38:38.825761: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 3
2022-10-20 18:38:38.825767: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 3
2022-10-20 18:38:38.825773: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 3
2022-10-20 18:38:38.825802: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 3
2022-10-20 18:38:38.825810: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 3
2022-10-20 18:38:38.825816: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 3
2022-10-20 18:38:38.825824: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 4
2022-10-20 18:38:38.825830: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 3
2022-10-20 18:38:38.825857: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
2022-10-20 18:38:38.855854: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:288] gpu_async_0 cuMemAllocAsync failed to allocate 1083564064 bytes: CUDA error: out of memory (CUDA_ERROR_OUT_OF_MEMORY)
Reported by CUDA: Free memory/Total memory: 515440640/17069309952
2022-10-20 18:38:38.855897: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:293] Stats: Limit: 1706033152
InUse: 4647134016
MaxInUse: 4647134016
NumAllocs: 253
MaxAllocSize: 1083564064
Reserved: 0
PeakReserved: 0
LargestFreeBlock: 0

2022-10-20 18:38:38.855916: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:56] Histogram of current allocation: (allocation_size_in_bytes, nb_allocation_of_that_sizes), ...;
2022-10-20 18:38:38.855925: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1, 4
2022-10-20 18:38:38.855932: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4, 34
2022-10-20 18:38:38.855938: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 8, 8
2022-10-20 18:38:38.855944: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 40, 2
2022-10-20 18:38:38.855950: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 128, 9
2022-10-20 18:38:38.855956: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 160, 9
2022-10-20 18:38:38.855962: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 192, 4
2022-10-20 18:38:38.855969: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 256, 7
2022-10-20 18:38:38.855975: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 288, 4
2022-10-20 18:38:38.855981: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 480, 5
2022-10-20 18:38:38.855987: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1028, 1
2022-10-20 18:38:38.855993: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 3168, 5
2022-10-20 18:38:38.855999: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 61440, 3
2022-10-20 18:38:38.856006: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 65536, 3
2022-10-20 18:38:38.856012: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 584352, 5
2022-10-20 18:38:38.856018: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 823872, 5
2022-10-20 18:38:38.856032: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 4324736, 5
2022-10-20 18:38:38.856039: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 7426048, 5
2022-10-20 18:38:38.856045: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 15401440, 5
2022-10-20 18:38:38.856051: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 18678720, 5
2022-10-20 18:38:38.856058: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 39970560, 5
2022-10-20 18:38:38.856064: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 56589504, 5
2022-10-20 18:38:38.856070: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 135407776, 5
2022-10-20 18:38:38.856096: E tensorflow/core/common_runtime/gpu/gpu_cudamallocasync_allocator.cc:59] 1083564064, 3
2022-10-20 18:38:38.856110: W tensorflow/core/framework/op_kernel.cc:1733] RESOURCE_EXHAUSTED: failed to allocate memory
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/usr/lib/python3.8/logging/init.py", line 2127, in shutdown
h.close()
File "/usr/local/lib/python3.8/dist-packages/absl/logging/init.py", line 934, in close
self.stream.close()
File "/usr/local/lib/python3.8/dist-packages/ipykernel/iostream.py", line 438, in close
self.watch_fd_thread.join()
AttributeError: 'OutStream' object has no attribute 'watch_fd_thread'
=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../../../usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:36
/usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../../../usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:37
/usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../../../usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:38
/usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../../../usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:39
/usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../../../usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:40
/usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../../../usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:41
/usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 2 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 6 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 26 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 5 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 26 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 60 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 15 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/usr/local/lib/python3.8/dist-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 2 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 5 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 26 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 26 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 32 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 9 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/usr/local/lib/python3.8/dist-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 2 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 4 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/usr/local/lib/python3.8/dist-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:960: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/models/test_retrieval.py: 54 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_fileq9jhqx5m.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:614: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 26 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:294: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:335: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/usr/local/lib/python3.8/dist-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:62: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:78: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:92: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../../../usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
==== 1 failed, 762 passed, 12 skipped, 1211 warnings in 1514.07s (0:25:14) =====
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins15424315476906635711.sh

@sararb
Copy link
Contributor Author

sararb commented Oct 20, 2022

rerun tests

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #815 of commit 6ebbb78330f12a3e5bc47283faccee5d6fda506f, no merge conflicts.
Running as SYSTEM
Setting status of 6ebbb78330f12a3e5bc47283faccee5d6fda506f to PENDING with url https://10.20.13.93:8080/job/merlin_models/1555/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/815/*:refs/remotes/origin/pr/815/* # timeout=10
 > git rev-parse 6ebbb78330f12a3e5bc47283faccee5d6fda506f^{commit} # timeout=10
Checking out Revision 6ebbb78330f12a3e5bc47283faccee5d6fda506f (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 6ebbb78330f12a3e5bc47283faccee5d6fda506f # timeout=10
Commit message: "fix logit scaler for new ModelOutput API"
 > git rev-list --no-walk 2c2062dcb9c8ec545bf784415cf3acafca86d14d # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins7166896445195625129.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: traitlets>=5.1 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (5.4.0)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: importlib-resources>=1.4.0; python_version < "3.9" in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10; python_version < "3.9" in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: zipp>=3.1.0; python_version < "3.10" in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0; python_version < "3.9"->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.6.1, xdist-2.5.0, forked-1.4.0, cov-4.0.0
collected 775 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py ...... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 6%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 8%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 9%]
tests/unit/tf/blocks/test_interactions.py ... [ 9%]
tests/unit/tf/blocks/test_mlp.py ................................. [ 13%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 18%]
..................... [ 20%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 21%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 21%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 22%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 22%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 23%]
tests/unit/tf/core/test_aggregation.py ......... [ 24%]
tests/unit/tf/core/test_base.py .. [ 24%]
tests/unit/tf/core/test_combinators.py s.................... [ 27%]
tests/unit/tf/core/test_encoder.py .. [ 27%]
tests/unit/tf/core/test_index.py ... [ 27%]
tests/unit/tf/core/test_prediction.py .. [ 28%]
tests/unit/tf/core/test_tabular.py ...... [ 28%]
tests/unit/tf/examples/test_01_getting_started.py . [ 29%]
tests/unit/tf/examples/test_02_dataschema.py . [ 29%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 29%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 29%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 29%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 29%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 29%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py F [ 29%]
[ 29%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py . [ 30%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 30%]
tests/unit/tf/inputs/test_continuous.py ..... [ 30%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 35%]
....... [ 36%]
tests/unit/tf/inputs/test_tabular.py .................. [ 38%]
tests/unit/tf/layers/test_queue.py .............. [ 40%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 43%]
tests/unit/tf/metrics/test_metrics_topk.py ........................ [ 46%]
tests/unit/tf/models/test_base.py s....................... [ 49%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 54%]
tests/unit/tf/models/test_retrieval.py ...................Terminated
Build was aborted
Aborted by �[8mha:////4I6AZwo/1Z8Fal8AhZTEatjIwqNwCcqT21311HdysuK+AAAAlx+LCAAAAAAAAP9b85aBtbiIQTGjNKU4P08vOT+vOD8nVc83PyU1x6OyILUoJzMv2y+/JJUBAhiZGBgqihhk0NSjKDWzXb3RdlLBUSYGJk8GtpzUvPSSDB8G5tKinBIGIZ+sxLJE/ZzEvHT94JKizLx0a6BxUmjGOUNodHsLgAzWEgZu/dLi1CL9xJTczDwAj6GcLcAAAAA=�[0madmin
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins13186449769077777839.sh

@nvidia-merlin-bot
Copy link

Click to view CI Results
GitHub pull request #815 of commit 2c6405ce9fc2b75491206f235e4ca16685e1e4e2, no merge conflicts.
Running as SYSTEM
Setting status of 2c6405ce9fc2b75491206f235e4ca16685e1e4e2 to PENDING with url https://10.20.13.93:8080/job/merlin_models/1561/console and message: 'Pending'
Using context: Jenkins
Building on master in workspace /var/jenkins_home/workspace/merlin_models
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/models/ # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/models/
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/models/ +refs/pull/815/*:refs/remotes/origin/pr/815/* # timeout=10
 > git rev-parse 2c6405ce9fc2b75491206f235e4ca16685e1e4e2^{commit} # timeout=10
Checking out Revision 2c6405ce9fc2b75491206f235e4ca16685e1e4e2 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 2c6405ce9fc2b75491206f235e4ca16685e1e4e2 # timeout=10
Commit message: "Merge branch 'main' into fix-logit-scaler"
 > git rev-list --no-walk 76f7861477466e2003bd4c37851d4b1a93234fd4 # timeout=10
[merlin_models] $ /bin/bash /tmp/jenkins14718599634250335050.sh
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Requirement already satisfied: testbook in /usr/local/lib/python3.8/dist-packages (0.4.2)
Requirement already satisfied: nbformat>=5.0.4 in /usr/local/lib/python3.8/dist-packages (from testbook) (5.5.0)
Requirement already satisfied: nbclient>=0.4.0 in /usr/local/lib/python3.8/dist-packages (from testbook) (0.6.8)
Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (2.16.1)
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.16.0)
Requirement already satisfied: jupyter_core in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (4.11.1)
Requirement already satisfied: traitlets>=5.1 in /usr/local/lib/python3.8/dist-packages (from nbformat>=5.0.4->testbook) (5.4.0)
Requirement already satisfied: jupyter-client>=6.1.5 in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (7.3.5)
Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.8/dist-packages (from nbclient>=0.4.0->testbook) (1.5.5)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (22.1.0)
Requirement already satisfied: importlib-resources>=1.4.0; python_version < "3.9" in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (5.9.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10; python_version < "3.9" in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (1.3.10)
Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.8/dist-packages (from jsonschema>=2.6->nbformat>=5.0.4->testbook) (0.18.1)
Requirement already satisfied: entrypoints in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (0.4)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (2.8.2)
Requirement already satisfied: pyzmq>=23.0 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (24.0.0)
Requirement already satisfied: tornado>=6.2 in /usr/local/lib/python3.8/dist-packages (from jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (6.2)
Requirement already satisfied: zipp>=3.1.0; python_version < "3.10" in /usr/local/lib/python3.8/dist-packages (from importlib-resources>=1.4.0; python_version < "3.9"->jsonschema>=2.6->nbformat>=5.0.4->testbook) (3.8.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.5->nbclient>=0.4.0->testbook) (1.15.0)
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
rootdir: /var/jenkins_home/workspace/merlin_models/models, configfile: pyproject.toml
plugins: anyio-3.6.1, xdist-2.5.0, forked-1.4.0, cov-4.0.0
collected 775 items

tests/unit/config/test_schema.py .... [ 0%]
tests/unit/datasets/test_advertising.py .s [ 0%]
tests/unit/datasets/test_ecommerce.py ..sss [ 1%]
tests/unit/datasets/test_entertainment.py ....sss. [ 2%]
tests/unit/datasets/test_social.py . [ 2%]
tests/unit/datasets/test_synthetic.py ...... [ 3%]
tests/unit/implicit/test_implicit.py . [ 3%]
tests/unit/lightfm/test_lightfm.py . [ 3%]
tests/unit/tf/test_core.py ...... [ 4%]
tests/unit/tf/test_loader.py ................ [ 6%]
tests/unit/tf/test_public_api.py . [ 6%]
tests/unit/tf/blocks/test_cross.py ........... [ 8%]
tests/unit/tf/blocks/test_dlrm.py .......... [ 9%]
tests/unit/tf/blocks/test_interactions.py ... [ 9%]
tests/unit/tf/blocks/test_mlp.py ................................. [ 13%]
tests/unit/tf/blocks/test_optimizer.py s................................ [ 18%]
..................... [ 20%]
tests/unit/tf/blocks/retrieval/test_base.py . [ 21%]
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py .. [ 21%]
tests/unit/tf/blocks/retrieval/test_two_tower.py ............ [ 22%]
tests/unit/tf/blocks/sampling/test_cross_batch.py . [ 22%]
tests/unit/tf/blocks/sampling/test_in_batch.py . [ 23%]
tests/unit/tf/core/test_aggregation.py ......... [ 24%]
tests/unit/tf/core/test_base.py .. [ 24%]
tests/unit/tf/core/test_combinators.py s.................... [ 27%]
tests/unit/tf/core/test_encoder.py .. [ 27%]
tests/unit/tf/core/test_index.py ... [ 27%]
tests/unit/tf/core/test_prediction.py .. [ 28%]
tests/unit/tf/core/test_tabular.py ...... [ 28%]
tests/unit/tf/examples/test_01_getting_started.py . [ 29%]
tests/unit/tf/examples/test_02_dataschema.py . [ 29%]
tests/unit/tf/examples/test_03_exploring_different_models.py . [ 29%]
tests/unit/tf/examples/test_04_export_ranking_models.py . [ 29%]
tests/unit/tf/examples/test_05_export_retrieval_model.py . [ 29%]
tests/unit/tf/examples/test_06_advanced_own_architecture.py . [ 29%]
tests/unit/tf/examples/test_07_train_traditional_models.py . [ 29%]
tests/unit/tf/examples/test_usecase_accelerate_training_by_lazyadam.py . [ 29%]
[ 29%]
tests/unit/tf/examples/test_usecase_ecommerce_session_based.py . [ 30%]
tests/unit/tf/examples/test_usecase_pretrained_embeddings.py . [ 30%]
tests/unit/tf/inputs/test_continuous.py ..... [ 30%]
tests/unit/tf/inputs/test_embedding.py ................................. [ 35%]
....... [ 36%]
tests/unit/tf/inputs/test_tabular.py .................. [ 38%]
tests/unit/tf/layers/test_queue.py .............. [ 40%]
tests/unit/tf/losses/test_losses.py ....................... [ 43%]
tests/unit/tf/metrics/test_metrics_popularity.py ..... [ 43%]
tests/unit/tf/metrics/test_metrics_topk.py ........................ [ 46%]
tests/unit/tf/models/test_base.py s....................... [ 49%]
tests/unit/tf/models/test_benchmark.py .. [ 50%]
tests/unit/tf/models/test_ranking.py .................................. [ 54%]
tests/unit/tf/models/test_retrieval.py ................................ [ 58%]
tests/unit/tf/outputs/test_base.py ...... [ 59%]
tests/unit/tf/outputs/test_classification.py ...... [ 60%]
tests/unit/tf/outputs/test_contrastive.py .............. [ 62%]
tests/unit/tf/outputs/test_regression.py .. [ 62%]
tests/unit/tf/outputs/test_sampling.py .... [ 62%]
tests/unit/tf/outputs/test_topk.py . [ 62%]
tests/unit/tf/prediction_tasks/test_classification.py .. [ 63%]
tests/unit/tf/prediction_tasks/test_multi_task.py ................ [ 65%]
tests/unit/tf/prediction_tasks/test_next_item.py ..... [ 65%]
tests/unit/tf/prediction_tasks/test_regression.py ..... [ 66%]
tests/unit/tf/prediction_tasks/test_retrieval.py . [ 66%]
tests/unit/tf/prediction_tasks/test_sampling.py ...... [ 67%]
tests/unit/tf/transformers/test_block.py .................... [ 70%]
tests/unit/tf/transformers/test_transforms.py ...... [ 70%]
tests/unit/tf/transforms/test_bias.py .. [ 71%]
tests/unit/tf/transforms/test_features.py s............................. [ 74%]
....................s...... [ 78%]
tests/unit/tf/transforms/test_negative_sampling.py ......... [ 79%]
tests/unit/tf/transforms/test_noise.py ..... [ 80%]
tests/unit/tf/transforms/test_sequence.py .................... [ 82%]
tests/unit/tf/transforms/test_tensor.py ... [ 83%]
tests/unit/tf/utils/test_batch.py .... [ 83%]
tests/unit/tf/utils/test_dataset.py .. [ 84%]
tests/unit/tf/utils/test_tf_utils.py ..... [ 84%]
tests/unit/torch/test_dataset.py ......... [ 85%]
tests/unit/torch/test_public_api.py . [ 85%]
tests/unit/torch/block/test_base.py .... [ 86%]
tests/unit/torch/block/test_mlp.py . [ 86%]
tests/unit/torch/features/test_continuous.py .. [ 86%]
tests/unit/torch/features/test_embedding.py .............. [ 88%]
tests/unit/torch/features/test_tabular.py .... [ 89%]
tests/unit/torch/model/test_head.py ............ [ 90%]
tests/unit/torch/model/test_model.py .. [ 90%]
tests/unit/torch/tabular/test_aggregation.py ........ [ 92%]
tests/unit/torch/tabular/test_tabular.py ... [ 92%]
tests/unit/torch/tabular/test_transformations.py ....... [ 93%]
tests/unit/utils/test_schema_utils.py ................................ [ 97%]
tests/unit/xgb/test_xgboost.py .................... [100%]

=============================== warnings summary ===============================
../../../../../usr/lib/python3/dist-packages/requests/init.py:89
/usr/lib/python3/dist-packages/requests/init.py:89: RequestsDependencyWarning: urllib3 (1.26.12) or chardet (3.0.4) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({}) doesn't match a supported "

../../../../../usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:36
/usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
'nearest': pil_image.NEAREST,

../../../../../usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:37
/usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
'bilinear': pil_image.BILINEAR,

../../../../../usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:38
/usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
'bicubic': pil_image.BICUBIC,

../../../../../usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:39
/usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
'hamming': pil_image.HAMMING,

../../../../../usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:40
/usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
'box': pil_image.BOX,

../../../../../usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:41
/usr/local/lib/python3.8/dist-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
'lanczos': pil_image.LANCZOS,

tests/unit/datasets/test_advertising.py: 1 warning
tests/unit/datasets/test_ecommerce.py: 2 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 6 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 26 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 5 warnings
tests/unit/tf/core/test_index.py: 8 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 26 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 38 warnings
tests/unit/tf/models/test_retrieval.py: 60 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/prediction_tasks/test_retrieval.py: 1 warning
tests/unit/tf/transformers/test_block.py: 15 warnings
tests/unit/tf/transforms/test_bias.py: 2 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_noise.py: 1 warning
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 9 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 3 warnings
tests/unit/xgb/test_xgboost.py: 18 warnings
/usr/local/lib/python3.8/dist-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_ecommerce.py: 2 warnings
tests/unit/datasets/test_entertainment.py: 4 warnings
tests/unit/datasets/test_social.py: 1 warning
tests/unit/datasets/test_synthetic.py: 5 warnings
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_core.py: 6 warnings
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/test_cross.py: 5 warnings
tests/unit/tf/blocks/test_dlrm.py: 9 warnings
tests/unit/tf/blocks/test_interactions.py: 2 warnings
tests/unit/tf/blocks/test_mlp.py: 26 warnings
tests/unit/tf/blocks/test_optimizer.py: 30 warnings
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 11 warnings
tests/unit/tf/core/test_aggregation.py: 6 warnings
tests/unit/tf/core/test_base.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 7 warnings
tests/unit/tf/core/test_index.py: 3 warnings
tests/unit/tf/core/test_prediction.py: 2 warnings
tests/unit/tf/inputs/test_continuous.py: 4 warnings
tests/unit/tf/inputs/test_embedding.py: 20 warnings
tests/unit/tf/inputs/test_tabular.py: 18 warnings
tests/unit/tf/models/test_base.py: 26 warnings
tests/unit/tf/models/test_benchmark.py: 2 warnings
tests/unit/tf/models/test_ranking.py: 36 warnings
tests/unit/tf/models/test_retrieval.py: 32 warnings
tests/unit/tf/outputs/test_base.py: 6 warnings
tests/unit/tf/outputs/test_classification.py: 6 warnings
tests/unit/tf/outputs/test_contrastive.py: 19 warnings
tests/unit/tf/outputs/test_regression.py: 2 warnings
tests/unit/tf/prediction_tasks/test_classification.py: 2 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 5 warnings
tests/unit/tf/transformers/test_block.py: 9 warnings
tests/unit/tf/transforms/test_features.py: 10 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 10 warnings
tests/unit/tf/transforms/test_sequence.py: 15 warnings
tests/unit/tf/utils/test_batch.py: 7 warnings
tests/unit/tf/utils/test_dataset.py: 2 warnings
tests/unit/torch/block/test_base.py: 4 warnings
tests/unit/torch/block/test_mlp.py: 1 warning
tests/unit/torch/features/test_continuous.py: 1 warning
tests/unit/torch/features/test_embedding.py: 4 warnings
tests/unit/torch/features/test_tabular.py: 4 warnings
tests/unit/torch/model/test_head.py: 12 warnings
tests/unit/torch/model/test_model.py: 2 warnings
tests/unit/torch/tabular/test_aggregation.py: 6 warnings
tests/unit/torch/tabular/test_transformations.py: 2 warnings
tests/unit/xgb/test_xgboost.py: 17 warnings
/usr/local/lib/python3.8/dist-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/datasets/test_entertainment.py: 1 warning
tests/unit/implicit/test_implicit.py: 1 warning
tests/unit/lightfm/test_lightfm.py: 1 warning
tests/unit/tf/test_loader.py: 1 warning
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py: 2 warnings
tests/unit/tf/blocks/retrieval/test_two_tower.py: 2 warnings
tests/unit/tf/core/test_combinators.py: 11 warnings
tests/unit/tf/core/test_encoder.py: 2 warnings
tests/unit/tf/core/test_prediction.py: 1 warning
tests/unit/tf/inputs/test_continuous.py: 2 warnings
tests/unit/tf/inputs/test_embedding.py: 9 warnings
tests/unit/tf/inputs/test_tabular.py: 8 warnings
tests/unit/tf/models/test_ranking.py: 20 warnings
tests/unit/tf/models/test_retrieval.py: 4 warnings
tests/unit/tf/prediction_tasks/test_multi_task.py: 16 warnings
tests/unit/tf/prediction_tasks/test_regression.py: 3 warnings
tests/unit/tf/transforms/test_negative_sampling.py: 9 warnings
tests/unit/xgb/test_xgboost.py: 12 warnings
/usr/local/lib/python3.8/dist-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.SESSION_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.SESSION: 'session'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_matrix_factorization.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/blocks/retrieval/test_two_tower.py::test_matrix_factorization_embedding_export
tests/unit/tf/inputs/test_embedding.py::test_embedding_features_exporting_and_loading_pretrained_initializer
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/inputs/embedding.py:960: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
embeddings_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(embeddings)))

tests/unit/tf/blocks/retrieval/test_two_tower.py: 1 warning
tests/unit/tf/core/test_index.py: 4 warnings
tests/unit/tf/models/test_retrieval.py: 54 warnings
tests/unit/tf/prediction_tasks/test_next_item.py: 3 warnings
tests/unit/tf/utils/test_batch.py: 2 warnings
/tmp/autograph_generated_fileb_0twgld.py:8: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
ag
.converted_call(ag__.ld(warnings).warn, ("The 'warn' method is deprecated, use 'warning' instead", ag__.ld(DeprecationWarning), 2), None, fscope)

tests/unit/tf/core/test_combinators.py::test_parallel_block_select_by_tags
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/core/tabular.py:614: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
elif isinstance(self.feature_names, collections.Sequence):

tests/unit/tf/core/test_index.py: 5 warnings
tests/unit/tf/models/test_retrieval.py: 26 warnings
tests/unit/tf/utils/test_batch.py: 4 warnings
tests/unit/tf/utils/test_dataset.py: 1 warning
/var/jenkins_home/workspace/merlin_models/models/merlin/models/utils/dataset.py:75: DeprecationWarning: unique_rows_by_features is deprecated and will be removed in a future version. Please use unique_by_tag instead.
warnings.warn(

tests/unit/tf/models/test_base.py::test_model_pre_post[True]
tests/unit/tf/models/test_base.py::test_model_pre_post[False]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.1]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.3]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.5]
tests/unit/tf/transforms/test_noise.py::test_stochastic_swap_noise[0.7]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/util/dispatch.py:1082: UserWarning: tf.keras.backend.random_binomial is deprecated, and will be removed in a future version.Please use tf.keras.backend.random_bernoulli instead.
return dispatch_target(*args, **kwargs)

tests/unit/tf/models/test_base.py::test_freeze_parallel_block[True]
tests/unit/tf/models/test_base.py::test_freeze_sequential_block
tests/unit/tf/models/test_base.py::test_freeze_unfreeze
tests/unit/tf/models/test_base.py::test_unfreeze_all_blocks
/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/gradient_descent.py:108: UserWarning: The lr argument is deprecated, use learning_rate instead.
super(SGD, self).init(name, **kwargs)

tests/unit/tf/models/test_base.py::test_retrieval_model_query
tests/unit/tf/models/test_base.py::test_retrieval_model_query
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/utils/tf_utils.py:294: DeprecationWarning: This function is deprecated in favor of cupy.from_dlpack
tensor_cupy = cupy.fromDlpack(to_dlpack(tf.convert_to_tensor(tensor)))

tests/unit/tf/models/test_ranking.py::test_deepfm_model_only_categ_feats[False]
tests/unit/tf/models/test_ranking.py::test_deepfm_model_categ_and_continuous_feats[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_3/parallel_block_2/sequential_block_3/sequential_block_2/private__dense_1/dense_1/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_categorical_one_hot[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_model_hashed_cross[False]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_2/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[True]
tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/var/jenkins_home/workspace/merlin_models/models/merlin/models/tf/transforms/features.py:569: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_embedding_custom_inputblock[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/autograph/impl/api.py:371: UserWarning: Please make sure input features to be categorical, detect user_age has no categorical tag
return py_builtins.overload_of(f)(*args)

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_onehot_multihot_feature_interaction[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_5/sequential_block_9/sequential_block_8/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/models/test_ranking.py::test_wide_deep_model_wide_feature_interaction_multi_optimizer[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Reshape:0", shape=(None, 1), dtype=float32), dense_shape=Tensor("gradient_tape/model/parallel_block_4/sequential_block_6/sequential_block_5/private__dense_3/dense_3/embedding_lookup_sparse/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_as_classfication_model[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/bert_block/prepare_transformer_inputs_1/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_causal_language_modeling[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask_1/GatherV2:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/boolean_mask/GatherV2:0", shape=(None, 48), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/prepare_transformer_inputs_5/RaggedToTensor/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_3:0", shape=(None,), dtype=int64), values=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Reshape_2:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_1:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling[False]
tests/unit/tf/transformers/test_block.py::test_transformer_with_masked_language_modeling_check_eval_masked[False]
/usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/indexed_slices.py:444: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/model/gpt2_block/replace_masked_embeddings/RaggedWhere/RaggedTile_2/Reshape_3:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/model/concat_features/RaggedConcat/Slice_3:0", shape=(None, None), dtype=float32), dense_shape=Tensor("gradient_tape/model/concat_features/RaggedConcat/Shape_1:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
warnings.warn(

tests/unit/torch/block/test_mlp.py::test_mlp_block
/var/jenkins_home/workspace/merlin_models/models/tests/unit/torch/_conftest.py:151: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:201.)
return {key: torch.tensor(value) for key, value in data.items()}

tests/unit/xgb/test_xgboost.py::test_without_dask_client
tests/unit/xgb/test_xgboost.py::TestXGBoost::test_music_regression
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs0-DaskDeviceQuantileDMatrix]
tests/unit/xgb/test_xgboost.py::test_gpu_hist_dmatrix[fit_kwargs1-DaskDMatrix]
tests/unit/xgb/test_xgboost.py::TestEvals::test_multiple
tests/unit/xgb/test_xgboost.py::TestEvals::test_default
tests/unit/xgb/test_xgboost.py::TestEvals::test_train_and_valid
tests/unit/xgb/test_xgboost.py::TestEvals::test_invalid_data
/var/jenkins_home/workspace/merlin_models/models/merlin/models/xgb/init.py:335: UserWarning: Ignoring list columns as inputs to XGBoost model: ['item_genres', 'user_genres'].
warnings.warn(f"Ignoring list columns as inputs to XGBoost model: {list_column_names}.")

tests/unit/xgb/test_xgboost.py::TestXGBoost::test_unsupported_objective
/usr/local/lib/python3.8/dist-packages/tornado/ioloop.py:350: DeprecationWarning: make_current is deprecated; start the event loop first
self.make_current()

tests/unit/xgb/test_xgboost.py: 14 warnings
/usr/local/lib/python3.8/dist-packages/xgboost/dask.py:884: RuntimeWarning: coroutine 'Client._wait_for_workers' was never awaited
client.wait_for_workers(n_workers)
Enable tracemalloc to get traceback where the object was allocated.
See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info.

tests/unit/xgb/test_xgboost.py: 11 warnings
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:1183: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning.
mask = pd.Series(mask)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
=========================== short test summary info ============================
SKIPPED [1] tests/unit/datasets/test_advertising.py:20: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:62: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:78: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [1] tests/unit/datasets/test_ecommerce.py:92: ALI-CCP data is not available, pass it through env variable $DATA_PATH_ALICCP
SKIPPED [3] tests/unit/datasets/test_entertainment.py:44: No data-dir available, pass it through env variable $INPUT_DATA_DIR
SKIPPED [5] ../../../../../usr/local/lib/python3.8/dist-packages/tensorflow/python/framework/test_util.py:2746: Not a test.
========= 763 passed, 12 skipped, 1211 warnings in 1513.19s (0:25:13) ==========
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/models/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[merlin_models] $ /bin/bash /tmp/jenkins3178266470611072434.sh

@marcromeyn marcromeyn self-requested a review October 24, 2022 09:47
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants