Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix for working with cudf 0.15 #159

Merged
merged 1 commit into from
Jul 20, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions nvtabular/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -208,7 +208,7 @@ def stat_logic(self, ddf, columns_ctx, input_cols, target_cols):

@annotate("MinMax_finalize", color="green", domain="nvt_python")
def finalize(self, stats):
for col in stats["mins"].index:
for col in stats["mins"].index.values_host:
self.mins[col] = stats["mins"][col]
self.maxs[col] = stats["maxs"][col]

Expand Down Expand Up @@ -264,7 +264,7 @@ def stat_logic(self, ddf, columns_ctx, input_cols, target_cols):

@annotate("Moments_finalize", color="green", domain="nvt_python")
def finalize(self, dask_stats):
for col in dask_stats["count"].index:
for col in dask_stats["count"].index.values_host:
self.counts[col] = float(dask_stats["count"][col])
self.means[col] = float(dask_stats["mean"][col])
self.stds[col] = float(dask_stats["std"][col])
Expand Down Expand Up @@ -317,7 +317,7 @@ def stat_logic(self, ddf, columns_ctx, input_cols, target_cols):

@annotate("Median_finalize", color="green", domain="nvt_python")
def finalize(self, dask_stats):
for col in dask_stats.index:
for col in dask_stats.index.values_host:
self.medians[col] = float(dask_stats[col])

def registered_stats(self):
Expand Down
4 changes: 2 additions & 2 deletions tests/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -151,6 +151,6 @@ def get_cats(processor, col, stat_name="categories"):
filename = processor.stats[stat_name][col]
gdf = cudf.read_parquet(filename)
gdf.reset_index(drop=True, inplace=True)
return gdf[col].values_to_string()
return gdf[col].values_host
else:
return processor.stats["encoders"][col].get_cats().values_to_string()
return processor.stats["encoders"][col].get_cats().values_host
8 changes: 4 additions & 4 deletions tests/unit/test_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,13 +109,13 @@ def test_encoder(tmpdir, df, dataset, gpu_memory_frac, engine, op_columns):
processor.update_stats(dataset)

if engine == "parquet" and not op_columns:
cats_expected0 = df["name-cat"].unique().values_to_string()
cats_expected0 = df["name-cat"].unique().values_host
cats0 = get_cats(processor, "name-cat")
assert cats0 == ["None"] + cats_expected0
assert cats0.tolist() == [None] + cats_expected0.tolist()

cats_expected1 = df["name-string"].unique().values_to_string()
cats_expected1 = df["name-string"].unique().values_host
cats1 = get_cats(processor, "name-string")
assert cats1 == ["None"] + cats_expected1
assert cats1.tolist() == [None] + cats_expected1.tolist()


@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
Expand Down
8 changes: 4 additions & 4 deletions tests/unit/test_torch_dataloader.py
Original file line number Diff line number Diff line change
Expand Up @@ -126,12 +126,12 @@ def get_norms(tar: cudf.Series):

# Check that categories match
if engine == "parquet":
cats_expected0 = df["name-cat"].unique().values_to_string()
cats_expected0 = df["name-cat"].unique().values_host
cats0 = get_cats(processor, "name-cat")
assert cats0 == ["None"] + cats_expected0
cats_expected1 = df["name-string"].unique().values_to_string()
assert cats0.tolist() == [None] + cats_expected0.tolist()
cats_expected1 = df["name-string"].unique().values_host
cats1 = get_cats(processor, "name-string")
assert cats1 == ["None"] + cats_expected1
assert cats1.tolist() == [None] + cats_expected1.tolist()

# Write to new "shuffled" and "processed" dataset
processor.write_to_dataset(tmpdir, dataset, nfiles=10, shuffle=True, apply_ops=True)
Expand Down
25 changes: 12 additions & 13 deletions tests/unit/test_workflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,14 +79,14 @@ def get_norms(tar: cudf.Series):

# Check that categories match
if engine == "parquet":
cats_expected0 = df["name-cat"].unique().values_to_string()
cats_expected0 = df["name-cat"].unique().values_host
cats0 = get_cats(processor, "name-cat")
# adding the None entry as a string because of move from gpu
assert cats0 == ["None"] + cats_expected0
cats_expected1 = df["name-string"].unique().values_to_string()
assert cats0.tolist() == [None] + cats_expected0.tolist()
cats_expected1 = df["name-string"].unique().values_host
cats1 = get_cats(processor, "name-string")
# adding the None entry as a string because of move from gpu
assert cats1 == ["None"] + cats_expected1
assert cats1.tolist() == [None] + cats_expected1.tolist()

# Write to new "shuffled" and "processed" dataset
processor.write_to_dataset(tmpdir, dataset, nfiles=10, shuffle=True, apply_ops=True)
Expand Down Expand Up @@ -155,14 +155,14 @@ def get_norms(tar: cudf.Series):

# Check that categories match
if engine == "parquet":
cats_expected0 = df["name-cat"].unique().values_to_string()
cats_expected0 = df["name-cat"].unique().values_host
cats0 = get_cats(processor, "name-cat")
# adding the None entry as a string because of move from gpu
assert cats0 == ["None"] + cats_expected0
cats_expected1 = df["name-string"].unique().values_to_string()
assert cats0.tolist() == [None] + cats_expected0.tolist()
cats_expected1 = df["name-string"].unique().values_host
cats1 = get_cats(processor, "name-string")
# adding the None entry as a string because of move from gpu
assert cats1 == ["None"] + cats_expected1
assert cats1.tolist() == [None] + cats_expected1.tolist()

# Write to new "shuffled" and "processed" dataset
processor.write_to_dataset(tmpdir, dataset, nfiles=10, shuffle=True, apply_ops=True)
Expand Down Expand Up @@ -236,17 +236,16 @@ def get_norms(tar: cudf.Series):
assert math.isclose(
get_norms(df.y).std(), processor.stats["stds"]["y" + concat_ops], rel_tol=1e-1
)

# Check that categories match
if engine == "parquet":
cats_expected0 = df["name-cat"].unique().values_to_string()
cats_expected0 = df["name-cat"].unique().values_host
cats0 = get_cats(processor, "name-cat")
# adding the None entry as a string because of move from gpu
assert cats0 == ["None"] + cats_expected0
cats_expected1 = df["name-string"].unique().values_to_string()
assert cats0.tolist() == [None] + cats_expected0.tolist()
cats_expected1 = df["name-string"].unique().values_host
cats1 = get_cats(processor, "name-string")
# adding the None entry as a string because of move from gpu
assert cats1 == ["None"] + cats_expected1
assert cats1.tolist() == [None] + cats_expected1.tolist()

# Write to new "shuffled" and "processed" dataset
processor.write_to_dataset(tmpdir, dataset, nfiles=10, shuffle=True, apply_ops=True)
Expand Down