Skip to content

Framework: Multi-Agent LLMs For Conversational Task-Solving (MALLM)

License

Notifications You must be signed in to change notification settings

Multi-Agent-LLMs/mallm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


MALLM

MALLM

Multi-Agent LLMs For Conversational Task-Solving: Framework

arXiv Black License Pipeline GitHub forks GitHub stars

Report Bug · Request Feature

Install

Create an environment with: conda create --name mallm python=3.12

Package

Install as a package: pip install -e .

Create Data

Download and create the test data: python data/data_downloader.py --datasets=[SQuAD2,ETPC]

You can use any dataset for this project as long as it follows this basic format. These datasets are supported by our automated formatting pipeline: AquaRat, BBQGenderIdentity, BTVote, ETHICS, ETPC, Europarl, GPQA, GSM8K, IFEval, MMLU, MMLUPro, MUSR, MathLvl5, MoCaMoral, MoralExceptQA, MultiNews, SQuAD2, SimpleEthicalQuestions, StrategyQA, WMT19DeEn, WinoGrande, XSum

Run from Terminal

MALLM relies on an external API like OpenAI or Text Generation Inference by Huggingface.

Once the endpoint is available, you can initiate all discussions with a single script. Example with TGI:

python mallm/scheduler.py --input_json_file_path=data/datasets/etpc_debugging.json --output_json_file_path=test_out.json --task_instruction_prompt="Paraphrase the input text." --endpoint_url="http://127.0.0.1:8080/v1"

Or with OpenAI:

python mallm/scheduler.py --input_json_file_path=data/datasets/etpc_debugging.json --output_json_file_path=test_out.json --task_instruction_prompt="Paraphrase the input text." --endpoint_url="https://api.openai.com/v1" --api_key="<your-key>"

Run command line scripts

You can run the command line scripts from the terminal. The following command will run the scheduler with the given parameters:

mallm-run --input_json_file_path=data/datasets/etpc_debugging.json --output_json_file_path=test_out.json --task_instruction_prompt="Paraphrase the input text." --endpoint_url="http://127.0.0.1:8080/v1" --model_name="tgi"

or use the evaluation script:

mallm-evaluate --input_json_file_path=test_out.json --output_json_file_path=test_out_evaluated.json --metrics=[bleu,rouge]

Run as Module

If installed, you can use MALLM in code:

from mallm import scheduler
from mallm.utils.config import Config

mallm_scheduler = scheduler.Scheduler(
    Config(
        input_json_file_path="data/datasets/etpc_debugging.json",
        output_json_file_path="test_out.json",
        task_instruction_prompt="Paraphrase the input text.",
        endpoint_url="http://127.0.0.1:8080/v1"
    )
)
mallm_scheduler.run()

Code Structure

MALLM is composed of three parts. The framework follows this structure and can be found in the mallm directory.

  1. Agents (subdirectory: mallm/agents/)
  2. Discourse Policy (subdirectory: mallm/discourse_policy/)
  3. Decision Protocol (subdirectory: mallm/decision_protocol/)

Experiments can be implemented as a separate repository, loading MALLM as a package.

Arguments

Config Arguments:

input_json_file_path: str = None
output_json_file_path: str = None
task_instruction_prompt: str = None
task_instruction_prompt_template: Optional[str] = None
endpoint_url: str = "https://api.openai.com/v1"
model_name: str = "gpt-3.5-turbo"
api_key: str = "-"
max_turns: int = 10
skip_decision_making: bool = False
discussion_paradigm: str = "memory"
response_generator: str = "simple"
decision_protocol: str = "hybrid_consensus"
visible_turns_in_memory: int = 2
debate_rounds: int = 2
concurrent_api_requests: int = 100
use_baseline: bool = False
use_chain_of_thought: bool = True
num_agents: int = 3
num_neutral_agents: int = 0
agent_generator: str = "expert"
agent_generators_list: list = []
trust_remote_code: bool = False
num_samples: Optional[int] = None
hf_dataset_split: Optional[str] = "test"
hf_token: Optional[str] = None
hf_dataset_version: Optional[str] = None
hf_dataset_input_column: Optional[str] = None
hf_dataset_reference_column: Optional[str] = None
hf_dataset_context_column: Optional[str] = None
use_ablation: bool = False
shuffle_input_samples: bool = False
all_agents_generate_first_draft: bool = False
all_agents_generate_draft: bool = False
policy: Optional[str] = None
voting_protocols_with_alterations: bool = False
calculate_persona_diversity: bool = False
challenge_final_results: bool = False

Discussion Parameters:

Response Generators: freetext, json, simple, splitfreetext

Decision Protocols: approval_voting, consensus_voting, cumulative_voting, hybrid_consensus, majority_consensus, ranked_voting, simple_voting, summary, supermajority_consensus, unanimity_consensus

Persona Generators: expert, ipip, mock, nopersona

Discussion Paradigms: collective_refinement, debate, memory, relay, report

Evaluation

We provide some basic evaluation metrics that can be directly applied to the output json of mallm. Supported metrics: answerability, bertscore, bleu, ifeval, includes_answer, meteor, multichoice, rouge, squad

From terminal:

mallm-evaluate --input_json_file_path=test_out.json --output_json_file_path=test_out_evaluated.json --metrics=[bleu,rouge]

From script:

from mallm.evaluation.evaluator import Evaluator

evaluator = Evaluator(input_file_path="test_out.json", metrics=["bleu", "rouge"], extensive=False)
evaluator.process()

Logging

To enable logging you can add a handler to the library logger. This can be done with the following code

import logging

# Configure logging for the library
library_logger = logging.getLogger("mallm")
library_logger.setLevel(logging.INFO)

# Add handlers to the logger
stream_handler = logging.StreamHandler()

# Optionally set a formatter
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
stream_handler.setFormatter(formatter)

# Attach the handler to the logger
library_logger.addHandler(stream_handler)

Using the Batch Executor

The batch executor allows you to run multiple configurations of the MALLM (Multi-Agent Language Model) scheduler in sequence. This is useful for running experiments with different parameters or processing multiple datasets.

Location

  • The batch executor script is located in the mallm/scripts folder and is named batch_mallm.py.
  • A template for the batch configuration file is provided as batch.json.template in the same folder.

Setup

  1. Prepare your configuration file:

    • Copy the batch.json.template file and rename it (e.g., my_batch_config.json).
    • Edit the JSON file to define your configurations. The file has four main sections:
      • name: A descriptive name for the batch of runs. This is optional but will be added to the output filename and can help identify the purpose of the batch.
      • repeats: The number of times to repeat each run. This is useful for running multiple trials with the same configuration.
      • common: Contains settings that apply to all runs unless overridden.
      • runs: An array of run-specific configurations.

    Example:

    {
      "name": "test",
      "repeats": 2,
      "common": {
        "model_name": "gpt-3.5-turbo",
        "max_turns": 10,
        "num_agents": 3
      },
      "runs": [
        {
          "input_json_file_path": "path/to/data1.json",
          "output_json_file_path": "path/to/output1.json",
          "task_instruction_prompt": "Instruction for run 1"
        },
        {
          "input_json_file_path": "path/to/data2.json",
          "output_json_file_path": "path/to/output2.json",
          "task_instruction_prompt": "Instruction for run 2",
          "model_name": "gpt-4",
          "max_turns": 15
        }
      ]
    }

    In this example, the second run overrides the model_name and max_turns settings from the common configuration.

  2. Ensure all required dependencies are installed.

Running the Batch Executor

To run the batch executor, use the following command from the terminal:

mallm-batch path/to/your/batch_config.json

Behavior

  • The batch executor will process each run configuration in the order they appear in the JSON file.
  • For each run:
    • It will create a Config object by merging the common settings with the run-specific settings.
    • It will then initialize a Scheduler with this configuration and run it.
    • Progress and any errors will be printed to the console.
  • If a configuration is invalid or encounters an error during execution, the batch processor will skip to the next run.
  • The process continues until all runs have been attempted.

Tips

  • Place settings that are common to most or all runs in the common section to reduce repetition.
  • Run-specific settings will override common settings if both are specified.
  • Always test your configurations individually before running them in a batch to ensure they work as expected.
  • Use descriptive output file names to easily identify the results of each run.
  • Monitor the console output for any error messages or skipped configurations.

By using the batch executor with common settings, you can easily manage multiple experiments or process various datasets with shared parameters, saving time and reducing the chance of configuration errors.

Contributing

If you want to contribute, please use this pre-commit hook to ensure the same formatting for everyone.

pip install pre-commit
pre-commit install

Testing

You can run unit tests locally: pytest ./test/

Citation

If you use this repository or the paper for your research work, please cite it in the following way.

@misc{becker2024multiagentlargelanguagemodels,
      title={Multi-Agent Large Language Models for Conversational Task-Solving}, 
      author={Jonas Becker},
      year={2024},
      eprint={2410.22932},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2410.22932}, 
}

About

Framework: Multi-Agent LLMs For Conversational Task-Solving (MALLM)

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages