Skip to content

A flexible Python front-end inference SDK based on TensorRT

License

Notifications You must be signed in to change notification settings

Media-Smart/flexinfer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

60 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FlexInfer

A flexible Python front-end inference SDK.

Features

  • Flexible

    FlexInfer has a Python front-end, which makes it easy to build a computer vision product prototype.

  • Efficient

    Most of time consuming part of FlexInfer is powered by C++ or CUDA, so FlexInfer is also efficient. If you are really hungry for efficiency and don't mind the trouble of C++, you can refer to CheetahInfer.

License

This project is released under Apache 2.0 license.

Installation

Requirements

  • Linux
  • Python 3.6 or higher
  • TensorRT 7.1.3.4 or higher
  • PyTorch 1.4.0 or higher
  • CUDA 10.2 or higher
  • volksdep 3.2.0 or higher

We have tested the following versions of OS and softwares:

  • OS: Ubuntu 16.04.6 LTS
  • Python 3.6.9
  • TensorRT 7.1.3.4
  • PyTorch 1.6.0
  • CUDA: 10.2
  • volksdep: 3.2.0

Install FlexInfer

  1. If your platform is x86 or x64, you can create a conda virtual environment and activate it.
conda create -n flexinfer python=3.6.9 -y
conda activate flexinfer
  1. Install volksdep following the official instructions

  2. Setup

pip install "git+https://github.com/Media-Smart/flexinfer.git"

Usage

We provide some examples for different tasks.

Throughput benchmark

  • Device: Jetson AGX Xavier
  • CUDA: 10.2
Tasks framework version input shape data type throughput(FPS) latency(ms)
Classification (ResNet18) PyTorch 1.5.0 (1, 3, 224, 224) FP16 172 6.01
TensorRT 7.1.0.16 (1, 3, 224, 224) FP16 754 1.8
Segmentation(U-Net) PyTorch 1.5.0 (1, 3, 513, 513) FP16 15 63.27
tensorrt 7.1.0.16 (1, 3, 513, 513) FP16 29 34.03
Object Detection RetinaNet-R50 PyTorch 1.5.0 (1, 3, 768, 1280) FP16 8 118.79
TensorRT 7.1.0.16 (1, 3, 768, 1280) FP16 15 68.10
TinaFace-R50-FPN-BN PyTorch 1.5.0 (1, 3, 768, 1280) FP16 3 273.60
TensorRT 7.1.0.16 (1, 3, 768, 1280) FP16 6 159.70
Scene Text Recognition (ResNet-CTC) PyTorch 1.5.0 (1, 1, 32, 100) FP16 113 10.75
TensorRT 7.1.0.16 (1, 1, 32, 100) FP16 308 3.55

We provide some toolboxes of different tasks for training, testing and deploying.

Contact

This repository is currently maintained by Yuxin Zou (@Yuxin Zou), Jun Sun(@ChaseMonsterAway), Hongxiang Cai (@hxcai) and Yichao Xiong (@mileistone).