Skip to content

Commit

Permalink
rev e update
Browse files Browse the repository at this point in the history
  • Loading branch information
M-ballabio1 committed Aug 26, 2024
1 parent c2ea922 commit 37263cd
Show file tree
Hide file tree
Showing 8 changed files with 45 additions and 21 deletions.
Binary file modified __pycache__/database.cpython-310.pyc
Binary file not shown.
6 changes: 3 additions & 3 deletions main.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from PIL import Image
import time
import datetime
import database as db
#import database as db
import streamlit_authenticator as stauth
import google_auth_httplib2
import httplib2
Expand All @@ -15,9 +15,9 @@
from googleapiclient.http import HttpRequest
from feel_it import EmotionClassifier, SentimentClassifier

from utils.Dashboard_Operations import dashboard_operations
#from utils.Dashboard_Operations import dashboard_operations
from utils.Dashboard import dashboard_patient_satisf
from utils.Dashboard_Economics import dashboard_economics
#from utils.Dashboard_Economics import dashboard_economics
from utils.Info_Page import landing_page
from utils.addition.graphs import graph_pes

Expand Down
22 changes: 10 additions & 12 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,18 +1,16 @@
pandas==1.5.3
pandas==2.2.2
google_api_python_client==2.86.0
streamlit==1.21.0
streamlit==1.37.1
plotly==5.14.1
openpyxl==3.1.2
pillow==9.5.0
streamlit-authenticator==0.1.5
matplotlib==3.7.1
matplotlib==3.9.2
asyncio==3.4.3
deta[async]==1.1.0a2
deta
htbuilder
streamlit-elements
wordcloud
scikit-learn==1.4.2
feel-it
statsmodels
streamlit-extras
htbuilder==0.6.2
streamlit-elements==0.1.0
wordcloud==1.9.3
scikit-learn==1.5.1
feel-it==1.0.5
statsmodels==0.14.2
#streamlit-extras==0.4.7
38 changes: 32 additions & 6 deletions utils/Dashboard.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,13 +160,19 @@ def display_dial(title, value, color):
with col2:
#Settimana attuale psi
df2_att_scorsa_settimana=df.loc[(df['Timestamp'] >= str(date_last_week))]
df2_medie_valori_week=df2_att_scorsa_settimana.mean().reset_index()

# Step 1: Numeric value
df2_medie_valori_week = df2_att_scorsa_settimana.select_dtypes(include=[np.number]).mean().reset_index()

df2_medie_valori_week.columns = ['variables', 'count']
psi_this_week=round(df2_medie_valori_week["count"].mean(), 4)
psi_perc=round((psi_this_week/7)*100,2)
#Settimana precedente alla sett scorsa psi
df2_prima_scorsa_settimana=df.loc[(df['Timestamp'] < str(date_last_week))]
df2_medie_valori_prec_week=df2_prima_scorsa_settimana.mean().reset_index()

# Step 1: Numeric value
df2_medie_valori_prec_week = df2_prima_scorsa_settimana.select_dtypes(include=[np.number]).mean().reset_index()

df2_medie_valori_prec_week.columns = ['variables', 'count']
psi_prima_last_week=round(df2_medie_valori_prec_week['count'].mean(), 4)
#differenza tra i PSI
Expand All @@ -178,6 +184,7 @@ def display_dial(title, value, color):
#Settimana attuale tws MEAN
df2_medie_valori_tws_week=df2_att_scorsa_settimana[["Sodd_tempo_attesa_rec","Sodd-tempo_attes_reparto_pre", "Soddisf_Tempo_Attesa_Risult"]].mean().reset_index()
df2_medie_valori_tws_week.columns = ['variables', 'count']
print(df2_medie_valori_tws_week)
tws_this_week=round(df2_medie_valori_tws_week["count"].mean(), 2)
#Settimana attuale tws STD
df2_dev_stand_valori_tws_week=df2_att_scorsa_settimana[["Sodd_tempo_attesa_rec","Sodd-tempo_attes_reparto_pre", "Soddisf_Tempo_Attesa_Risult"]].std().reset_index()
Expand Down Expand Up @@ -258,7 +265,9 @@ def display_dial(title, value, color):
ris_media=round(df_selection["Soddisf_Spiegaz_Radiologo"].mean(), 2)
st.header("Radar Chart Macro-Aree")
#esperienza
esp_media=round(df_selection[["Soddisf_Servizi_Igenici", "Soddisf_Pulizia_Reparto", "Soddisf_Cibo_Bevande", "Soddisf_Posti_Sedere", "Soddisf_Cordialità_staff", "Soddisf_Ambiente", "Soddisf_Privacy"]].mean(), 2)
print(df_selection[["Soddisf_Servizi_Igenici"]])
numeric_columns = df_selection.select_dtypes(include=[np.number]).columns
esp_media= df_selection[numeric_columns].mean(skipna=True)
esp_media=(esp_media[0]+esp_media[1]+esp_media[2]+esp_media[3]+esp_media[4]+esp_media[5])/len(esp_media)
st.subheader("")
DATA = [{"taste": "APPUNTAMENTO", "Peso Area": appunt_media},
Expand Down Expand Up @@ -364,7 +373,15 @@ def display_dial(title, value, color):
df3["FLungo"]=df3["Type_Form"]=="Form_lungo"

#first-sec row
df4= df.groupby(pd.Grouper(key='Timestamp', axis=0,freq='1W')).mean().reset_index()
# Seleziona le colonne numeriche e datetime
numeric_columns = df.select_dtypes(include=[np.number]).columns
datetime_columns = df.select_dtypes(include=[np.datetime64]).columns

# Combinare colonne numeriche e datetime
df_numeric = df[numeric_columns]

# Raggruppa per settimana e calcola la media solo per le colonne numeriche
df4 = df.groupby(pd.Grouper(key='Timestamp', freq='1W'))[numeric_columns].mean().reset_index()
df4["PX"]=round(df4[["Soddisf_Servizi_Igenici", "Soddisf_Pulizia_Reparto", "Soddisf_Cibo_Bevande", "Soddisf_Posti_Sedere", "Soddisf_Cordialità_staff", "Soddisf_Privacy"]].mean(axis=1), 2)
df4["target"]=10
df4["MA_PX"]=df4["PX"].rolling(2).mean()
Expand Down Expand Up @@ -511,7 +528,9 @@ def calculate_mean_std(df):
st.subheader("Correlation Matrix")
# Correlation Matrix in Content
st.write("")
df_corr = df.corr()
numeric_df = df.select_dtypes(include=[np.number])
# Calcola la matrice di correlazione
df_corr = numeric_df.corr()
fig_corr = go.Figure([go.Heatmap(z=df_corr.values,
x=df_corr.index.values,
y=df_corr.columns.values)])
Expand Down Expand Up @@ -615,7 +634,14 @@ def training_ml(x, y):

#df_new = px.data.tips()
#calcolo Patient Experience ogni 1 day
df5= df.groupby(pd.Grouper(key='Timestamp', axis=0,freq='D')).mean().reset_index()
# Seleziona le colonne numeriche e datetime
numeric_columns = df.select_dtypes(include=[np.number]).columns
datetime_columns = df.select_dtypes(include=[np.datetime64]).columns

# Combinare colonne numeriche e datetime
df_numeric = df[numeric_columns]

df5= df.groupby(pd.Grouper(key='Timestamp', axis=0,freq='D'))[numeric_columns].mean().reset_index()
df5["PX"]=round(df5[["Soddisf_Servizi_Igenici", "Soddisf_Tempo_Attesa_Risult", "Soddisf_Pulizia_Reparto", "Soddisf_Cibo_Bevande", "Soddisf_Posti_Sedere", "Soddisf_Cordialità_staff", "Soddisf_Privacy"]].mean(axis=1), 2)
#mean_px_daily=round(df5[["Soddisf_Servizi_Igenici", "Soddisf_Pulizia_Reparto", "Soddisf_Cibo_Bevande", "Soddisf_Posti_Sedere", "Soddisf_Cordialità_staff", "Soddisf_Privacy"]].mean(), 2)

Expand Down
Binary file modified utils/__pycache__/Dashboard.cpython-310.pyc
Binary file not shown.
Binary file modified utils/__pycache__/Dashboard_Operations.cpython-310.pyc
Binary file not shown.
Binary file modified utils/__pycache__/Info_Page.cpython-310.pyc
Binary file not shown.
Binary file modified utils/addition/__pycache__/graphs.cpython-310.pyc
Binary file not shown.

0 comments on commit 37263cd

Please sign in to comment.