-
Notifications
You must be signed in to change notification settings - Fork 51
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
98 additions
and
43 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
#%% | ||
''' this is a implementation of the Linear regression model | ||
from scratch without using any library ''' | ||
import numpy as np | ||
X = 2* np.random.rand(100,1) | ||
X | ||
|
||
#%% | ||
#the dependent equation i.e Y's value depends on Y | ||
Y = 4 + 3 * X + np.random.randn(100, 1) | ||
Y | ||
#%% | ||
#creates 100 X 1 shape matrix with value 1 | ||
np.ones((100,1)) | ||
#%% | ||
X_b = np.c_[np.ones((100, 1)), X] | ||
# add x0 = 1 to each instance | ||
X_b | ||
|
||
#%% | ||
''' the normal equation''' | ||
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(Y) | ||
theta_best | ||
|
||
#%% | ||
X_new = np.array([[0], [2]]) | ||
X_new_b = np.c_[np.ones((2, 1)), X_new] # add x0 = 1 to each instance | ||
y_predict = X_new_b.dot(theta_best) | ||
y_predict | ||
|
||
#%% | ||
import matplotlib.pyplot as plt | ||
plt.plot(X_new, y_predict, "r-") | ||
plt.plot(X, Y, "g.") | ||
plt.axis([0, 2, 0, 15]) | ||
plt.show() | ||
|
||
#%% | ||
#The equivalent implementation of the above Algorithm with library | ||
from sklearn.linear_model import LinearRegression | ||
lin_reg = LinearRegression() | ||
lin_reg.fit(X, Y) | ||
lin_reg.intercept_, lin_reg.coef_ | ||
lin_reg.predict(X_new) | ||
|
||
#%% | ||
''' this is the implementation of the gradient descent algorithm | ||
from scratch''' | ||
eta = 0.1 # learning rate | ||
n_iterations = 1000 | ||
m = 100 | ||
theta = np.random.randn(2,1) | ||
theta | ||
|
||
#%% | ||
for iteration in range(n_iterations): | ||
gradient = 2/m * X_b.T.dot(X_b.dot(theta) - Y) | ||
theta = theta - eta * gradient | ||
theta | ||
|
||
#%% | ||
''' | ||
this is the implementation of the stochastic gradient | ||
descent algorithm | ||
''' | ||
|
||
epochs = 50 | ||
t0 , t1 = (5,50) | ||
|
||
def learning_rate(t): | ||
return t0 / (t + t1) | ||
|
||
for epoch in range(epochs): | ||
for i in range(m): | ||
random_index = np.random.randint(m) | ||
x_i = X_b[random_index:(random_index + 1)] | ||
y_i = Y[random_index:random_index+1] | ||
gradients = 2 * x_i.T.dot(x_i.dot(theta) - y_i) | ||
eta = learning_rate(epoch * m + i) | ||
theta = theta - eta * gradients | ||
|
||
theta | ||
|
||
#%% | ||
from sklearn.preprocessing import PolynomialFeatures | ||
m = 100 | ||
X_p = 6 * np.random.rand(m, 1) - 3 | ||
Y_p = 0.5 * X_p**2 + X_p + 2 + np.random.randn(m, 1) | ||
poly_features = PolynomialFeatures(degree=2 , include_bias=False) | ||
X_poly = poly_features.fit_transform(X_p) | ||
X_p[0] | ||
X_poly[0] | ||
|
||
#%% | ||
lin_reg = LinearRegression() | ||
lin_reg.fit(X_poly,Y_p) | ||
print(lin_reg.intercept_ , lin_reg.coef_) | ||
|