Skip to content

a repository for minimal implementations of common generative models

License

Notifications You must be signed in to change notification settings

KyleM73/generative_minimal

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

77 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

generative_minimal

a repository for minimal implementations of common generative models

each model class contains a train.py script to train the associated model

Models:

  • Generative Adversarial Networks (GANs)
    • Generative Adversarial Network (GAN)
    • Deep Convolutional Generative Adversarial Network (DCGAN)
    • Wasserstein Generative Adversarial Network (WGAN)
  • Variational Auto Encoder (VAEs)
    • Variation Auto Encoder (VAE)
    • Conditional Variational Auto Encoder (CVAE)
  • Normalizing Flows
    • Normalizing Flow
  • Diffusion Models
    • Denoising Diffusion Probabalistic Model (DDPM)
  • Transformers
    • Encoder-only
    • Decoder-only
    • Encoder-Decoder

feel free to submit an issue or a pull request with additional models following the same format used here

Setup

  • conda create -n generative -y python=3.11 && conda activate generative
  • git clone git@github.com:KyleM73/generative_minimal.git
  • cd generative_minimal
  • pip install -e .
  • cd generative_minimal
  • python get_datasets.py
  • python models/<model>/train.py

Datasets

  • MNIST

About

a repository for minimal implementations of common generative models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages