Skip to content

Commit

Permalink
Updated helpdb.jl
Browse files Browse the repository at this point in the history
  • Loading branch information
ivarne committed Sep 22, 2014
1 parent f768153 commit 4c9f628
Showing 1 changed file with 80 additions and 60 deletions.
140 changes: 80 additions & 60 deletions doc/helpdb.jl
Original file line number Diff line number Diff line change
Expand Up @@ -30,8 +30,8 @@

("Base","whos","whos([Module,] [pattern::Regex])
Print information about exported global variables in a module, optionally
restricted to those matching \"pattern\".
Print information about exported global variables in a module,
optionally restricted to those matching \"pattern\".
"),

Expand Down Expand Up @@ -1611,7 +1611,7 @@
spliced in place of the removed item.
To insert \"replacement\" before an index \"n\" without removing
any items, use \"splice(collection, n-1:n, replacement)\".
any items, use \"splice!(collection, n:n-1, replacement)\".
"),

Expand All @@ -1623,7 +1623,7 @@
ordered collection will be spliced in place of the removed items.
To insert \"replacement\" before an index \"n\" without removing
any items, use \"splice(collection, n-1:n, replacement)\".
any items, use \"splice!(collection, n:n-1, replacement)\".
"),

Expand Down Expand Up @@ -5715,17 +5715,17 @@ popdisplay(d::Display)
"),

("Base","rand","rand(Int32|Uint32|Int64|Uint64|Int128|Uint128[, dims...])
("Base","rand","rand(t::Type[, dims...])
Generate a random integer of the given type. Optionally, generate
an array of random integers of the given type by specifying dims.
Generate a random number or array of random numbes of the given
type.
"),

("Base","rand","rand(r[, dims...])
Generate a random integer in the range \"r\" (for example, \"1:n\"
or \"0:2:10\"). Optionally, generate a random integer array.
Pick a random element or array of random elements from range \"r\"
(for example, \"1:n\" or \"0:2:10\").
"),

Expand All @@ -5736,13 +5736,6 @@ popdisplay(d::Display)
"),

("Base","randbool!","randbool!(A)
Fill an array with random boolean values. A may be an \"Array\" or
a \"BitArray\".
"),

("Base","randn","randn([rng], dims or [dims...])
Generate a normally-distributed random number with mean 0 and
Expand Down Expand Up @@ -5851,13 +5844,29 @@ popdisplay(d::Display)

("Base","zeros","zeros(type, dims)
Create an array of all zeros of specified type
Create an array of all zeros of specified type. The type defaults
to Float64 if not specified.
"),

("Base","zeros","zeros(A)
Create an array of all zeros with the same element type and shape
as A.
"),

("Base","ones","ones(type, dims)
Create an array of all ones of specified type
Create an array of all ones of specified type. The type defaults to
Float64 if not specified.
"),

("Base","ones","ones(A)
Create an array of all ones with the same element type and shape as
A.
"),

Expand All @@ -5873,15 +5882,15 @@ popdisplay(d::Display)
"),

("Base","fill","fill(v, dims)
("Base","fill","fill(x, dims)
Create an array filled with \"v\"
Create an array filled with the value \"x\"
"),

("Base","fill!","fill!(A, x)
Fill array \"A\" with value \"x\"
Fill the array \"A\" with the value \"x\"
"),

Expand Down Expand Up @@ -9812,15 +9821,15 @@ Millisecond(v)
\"Complex{Float64}\" the return type is \"UmfpackLU\". Some
examples are shown in the table below.
+-------------------------+---------------------------+------------------------------------------+
| Type of input \\\"A\\\" | Type of output \\\"F\\\" | Relationship between \\\"F\\\" and \\\"A\\\" |
+-------------------------+---------------------------+------------------------------------------+
| \\\"Matrix()\\\" | \\\"LU\\\" | \\\"F[:L]*F[:U] == A[F[:p], :]\\\" |
+-------------------------+---------------------------+------------------------------------------+
| \\\"Tridiagonal()\\\" | \\\"LU{T,Tridiagonal{T}}\\\" | N/A |
+-------------------------+---------------------------+------------------------------------------+
| \\\"SparseMatrixCSC()\\\" | \\\"UmfpackLU\\\" | \\\"F[:L]*F[:U] == Rs .* A[F[:p], F[:q]]\\\" |
+-------------------------+---------------------------+------------------------------------------+
+-------------------------+---------------------------+----------------------------------------------+
| Type of input \\\"A\\\" | Type of output \\\"F\\\" | Relationship between \\\"F\\\" and \\\"A\\\" |
+-------------------------+---------------------------+----------------------------------------------+
| \\\"Matrix()\\\" | \\\"LU\\\" | \\\"F[:L]*F[:U] == A[F[:p], :]\\\" |
+-------------------------+---------------------------+----------------------------------------------+
| \\\"Tridiagonal()\\\" | \\\"LU{T,Tridiagonal{T}}\\\" | N/A |
+-------------------------+---------------------------+----------------------------------------------+
| \\\"SparseMatrixCSC()\\\" | \\\"UmfpackLU\\\" | \\\"F[:L]*F[:U] == F[:Rs] .* A[F[:p], F[:q]]\\\" |
+-------------------------+---------------------------+----------------------------------------------+
The individual components of the factorization \"F\" can be
accessed by indexing:
Expand Down Expand Up @@ -10044,7 +10053,7 @@ Millisecond(v)

("Base","eig","eig(A,[irange,][vl,][vu,][permute=true,][scale=true]) -> D, V
Compute eigenvalues and eigenvectors of \"A\". See \"eigfact()\"
Computes eigenvalues and eigenvectors of \"A\". See \"eigfact()\"
for details on the \"balance\" keyword argument.
julia> eig([1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])
Expand Down Expand Up @@ -10101,53 +10110,60 @@ Millisecond(v)
"),

("Base","eigvecs","eigvecs(A, [eigvals,][permute=true,][scale=true])
("Base","eigvecs","eigvecs(A, [eigvals,][permute=true,][scale=true]) -> Matrix
Returns the eigenvectors of \"A\". The \"permute\" and \"scale\"
keywords are the same as for \"eigfact()\".
Returns a matrix \"M\" whose columns are the eigenvectors of \"A\".
(The \"k``th eigenvector can be obtained from the slice ``M[:,
k]\".) The \"permute\" and \"scale\" keywords are the same as for
\"eigfact()\".
For \"SymTridiagonal()\" matrices, if the optional vector of
eigenvalues \"eigvals\" is specified, returns the specific
corresponding eigenvectors.
"),

("Base","eigfact","eigfact(A,[il,][iu,][vl,][vu,][permute=true,][scale=true])
("Base","eigfact","eigfact(A,[irange,][vl,][vu,][permute=true,][scale=true]) -> Eigen
Compute the eigenvalue decomposition of \"A\" and return an
\"Eigen\" object. If \"F\" is the factorization object, the
eigenvalues can be accessed with \"F[:values]\" and the
eigenvectors with \"F[:vectors]\". The following functions are
available for \"Eigen\" objects: \"inv\", \"det\".
Computes the eigenvalue decomposition of \"A\", returning an
\"Eigen\" factorization object \"F\" which contains the eigenvalues
in \"F[:values]\" and the eigenvectors in the columns of the matrix
\"F[:vectors]\". (The \"k``th eigenvector can be obtained from the
slice ``F[:vectors][:, k]\".)
If \"A\" is \"Symmetric\", \"Hermitian\" or \"SymTridiagonal\", it
is possible to calculate only a subset of the eigenvalues by
specifying either a *UnitRange`* \"irange\" covering indices of the
sorted eigenvalues or a pair \"vl\" and \"vu\" for the lower and
upper boundaries of the eigenvalues.
The following functions are available for \"Eigen\" objects:
\"inv\", \"det\".
For general non-symmetric matrices it is possible to specify how
the matrix is balanced before the eigenvector calculation. The
option \"permute=true\" permutes the matrix to become closer to
upper triangular, and \"scale=true\" scales the matrix by its
diagonal elements to make rows and columns more equal in norm. The
default is \"true\" for both options.
If \"A\" is \"Symmetric()\", \"Hermitian()\" or
\"SymTridiagonal()\", it is possible to calculate only a subset of
the eigenvalues by specifying either a \"UnitRange()\" \"irange\"
covering indices of the sorted eigenvalues or a pair \"vl\" and
\"vu\" for the lower and upper boundaries of the eigenvalues.
For general nonsymmetric matrices it is possible to specify how the
matrix is balanced before the eigenvector calculation. The option
\"permute=true\" permutes the matrix to become closer to upper
triangular, and \"scale=true\" scales the matrix by its diagonal
elements to make rows and columns more equal in norm. The default
is \"true\" for both options.
"),

("Base","eigfact","eigfact(A, B)
("Base","eigfact","eigfact(A, B) -> GeneralizedEigen
Compute the generalized eigenvalue decomposition of \"A\" and \"B\"
and return an \"GeneralizedEigen\" object. If \"F\" is the
factorization object, the eigenvalues can be accessed with
\"F[:values]\" and the eigenvectors with \"F[:vectors]\".
Computes the generalized eigenvalue decomposition of \"A\" and
\"B\", returning a \"GeneralizedEigen\" factorization object \"F\"
which contains the generalized eigenvalues in \"F[:values]\" and
the generalized eigenvectors in the columns of the matrix
\"F[:vectors]\". (The \"k``th generalized eigenvector can be
obtained from the slice ``F[:vectors][:, k]\".)
"),

("Base","eigfact!","eigfact!(A[, B])
\"eigfact!\" is the same as \"eigfact()\", but saves space by
overwriting the input A (and B), instead of creating a copy.
Same as \"eigfact()\", but saves space by overwriting the input
\"A\" (and \"B\"), instead of creating a copy.
"),

Expand Down Expand Up @@ -11052,11 +11068,15 @@ Millisecond(v)
"),

("Base.Pkg","init","init()
("Base.Pkg","init","init(meta::String=DEFAULT_META, branch::String=META_BRANCH)
Initialize \"Pkg.dir()\" as a package directory. This will be done
automatically when the \"JULIA_PKGDIR\" is not set and
\"Pkg.dir()\" uses its default value.
\"Pkg.dir()\" uses its default value. As part of this process,
clones a local METADATA git repository from the site and branch
specified by its arguments, which are typically not provided.
Explicit (non-default) arguments can be used to support a custom
METADATA setup.
"),

Expand Down

0 comments on commit 4c9f628

Please sign in to comment.