Skip to content

Commit

Permalink
Stop precomputing chunk sizes into a nonconcrete array (#708)
Browse files Browse the repository at this point in the history

This prevents constant propagation of the length of a static array. Alternative to #707

Co-authored-by: David Widmann <devmotion@users.noreply.github.com>
  • Loading branch information
KristofferC and devmotion committed Aug 19, 2024
1 parent 2ff6808 commit dd83a19
Show file tree
Hide file tree
Showing 3 changed files with 8 additions and 5 deletions.
5 changes: 1 addition & 4 deletions src/prelude.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,12 +14,9 @@ const BINARY_PREDICATES = Symbol[:isequal, :isless, :<, :>, :(==), :(!=), :(<=),

struct Chunk{N} end

const CHUNKS = [Chunk{i}() for i in 1:DEFAULT_CHUNK_THRESHOLD]

function Chunk(input_length::Integer, threshold::Integer = DEFAULT_CHUNK_THRESHOLD)
N = pickchunksize(input_length, threshold)
0 < N <= DEFAULT_CHUNK_THRESHOLD && return CHUNKS[N]
return Chunk{N}()
Base.@nif 12 d->(N == d) d->(Chunk{d}()) d->(Chunk{N}())
end

function Chunk(x::AbstractArray, threshold::Integer = DEFAULT_CHUNK_THRESHOLD)
Expand Down
3 changes: 3 additions & 0 deletions test/GradientTest.jl
Original file line number Diff line number Diff line change
Expand Up @@ -139,6 +139,9 @@ for T in (StaticArrays.SArray, StaticArrays.MArray)
@test DiffResults.gradient(sresult1) == DiffResults.gradient(result)
@test DiffResults.gradient(sresult2) == DiffResults.gradient(result)
@test DiffResults.gradient(sresult3) == DiffResults.gradient(result)

# make sure this is not a source of type instability
@inferred ForwardDiff.GradientConfig(f, sx)
end

@testset "exponential function at base zero" begin
Expand Down
5 changes: 4 additions & 1 deletion test/JacobianTest.jl
Original file line number Diff line number Diff line change
Expand Up @@ -224,6 +224,9 @@ for T in (StaticArrays.SArray, StaticArrays.MArray)
@test DiffResults.jacobian(sresult1) == DiffResults.jacobian(result)
@test DiffResults.jacobian(sresult2) == DiffResults.jacobian(result)
@test DiffResults.jacobian(sresult3) == DiffResults.jacobian(result)

# make sure this is not a source of type instability
@inferred ForwardDiff.JacobianConfig(f, sx)
end

@testset "dimension errors for jacobian" begin
Expand All @@ -235,7 +238,7 @@ end
@testset "eigen" begin
@test ForwardDiff.jacobian(x -> eigvals(SymTridiagonal(x, x[1:end-1])), [1.,2.]) [(1 - 3/sqrt(5))/2 (1 - 1/sqrt(5))/2 ; (1 + 3/sqrt(5))/2 (1 + 1/sqrt(5))/2]
@test ForwardDiff.jacobian(x -> eigvals(Symmetric(x*x')), [1.,2.]) [0 0; 2 4]

x0 = [1.0, 2.0];
ev1(x) = eigen(Symmetric(x*x')).vectors[:,1]
@test ForwardDiff.jacobian(ev1, x0) Calculus.finite_difference_jacobian(ev1, x0)
Expand Down

0 comments on commit dd83a19

Please sign in to comment.