This library extends OMW implemented in NLTK to add support for the following African languages.
- Sepedi (nso)
- Xitsonga (tsn)
- Tshivenda (ven)
- isiZulu (zul)
- isiXhosa (xho)
- From Pypi
pip install africanwordnet
- From source
pip install https://github.com/JosephSefara/AfricanWordNet.git
@inproceedings{sefara2021practical,
title={Practical Approach on Implementation of WordNets for South African Languages},
author={Sefara, Tshephisho and Mokgonyane, Tumisho and Marivate, Vukosi},
booktitle={Proceedings of the 11th Global Wordnet Conference},
pages={20--25},
year={2021},
}
>>> from nltk.corpus import wordnet as wn
>>> import africanwordnet
>>> wn.langs()
['nso', 'tsn', 'ven', 'zul', 'xho']
>>> wn.synsets('phêpafatsa',lang=('tsn'))
[Synset('scavenge.v.04'),
Synset('tidy.v.01'),
Synset('refine.v.04'),
Synset('refine.v.03'),
Synset('purify.v.01'),
Synset('purge.v.04'),
Synset('purify.v.02'),
Synset('clean.v.08'),
Synset('clean.v.01'),
Synset('houseclean.v.01')]
>>> wn.lemmas('phêpafatsa', lang='tsn')
[Lemma('scavenge.v.04.phêpafatsa'),
Lemma('tidy.v.01.phêpafatsa'),
Lemma('refine.v.04.phêpafatsa'),
Lemma('refine.v.03.phêpafatsa'),
Lemma('purify.v.01.phêpafatsa'),
Lemma('purge.v.04.phêpafatsa'),
Lemma('purify.v.02.phêpafatsa'),
Lemma('clean.v.08.phêpafatsa'),
Lemma('clean.v.01.phêpafatsa'),
Lemma('houseclean.v.01.phêpafatsa')]
>>> wn.synset('purify.v.01').lemma_names('tsn')
['phêpafatsa']
>>> lemma = wn.lemma('purify.v.01.phêpafatsa', lang='tsn')
>>> whole_lemma.lang()
'tsn'
>>> wn.synsets('taelo',lang=('nso'))
[Synset('call.n.12'),
Synset('mandate.n.03'),
Synset('command.n.01'),
Synset('order.n.01'),
Synset('commission.n.06'),
Synset('commandment.n.01'),
Synset('directive.n.01'),
Synset('injunction.n.01')]
>>> wn.lemmas('taelo', lang='nso')
[Lemma('call.n.12.taelo'),
Lemma('mandate.n.03.taelo'),
Lemma('command.n.01.taelo'),
Lemma('order.n.01.taelo'),
Lemma('commission.n.06.taelo'),
Lemma('commandment.n.01.taelo'),
Lemma('directive.n.01.taelo'),
Lemma('injunction.n.01.taelo')]
>>> wn.synset('call.n.12').lemma_names('nso')
['taelo']
>>> lemma = wn.lemma('call.n.12.taelo', lang='nso')
>>> whole_lemma.lang()
'nso'
>>> wn.synsets('iqoqo', lang='zul')
[Synset('whole.n.02'),
Synset('conspectus.n.01'),
Synset('overview.n.01'),
Synset('sketch.n.03'),
Synset('compilation.n.01'),
Synset('collection.n.01'),
Synset('team.n.02'),
Synset('set.n.01')]
>>> wn.lemmas('iqoqo', lang='zul')
[Lemma('whole.n.02.iqoqo'),
Lemma('conspectus.n.01.iqoqo'),
Lemma('overview.n.01.iqoqo'),
Lemma('sketch.n.03.iqoqo'),
Lemma('compilation.n.01.iqoqo'),
Lemma('collection.n.01.iqoqo'),
Lemma('team.n.02.iqoqo'),
Lemma('set.n.01.iqoqo')]
>>> wn.synset('whole.n.02').lemma_names('zul')
['iqoqo']
>>> whole_lemma = wn.lemma('whole.n.02.iqoqo', lang='zul')
>>> whole_lemma.lang()
'zul'
>>> wn.synsets('imali',lang=('xho'))
[Synset('finance.n.03'),
Synset('wealth.n.04'),
Synset('capital.n.01'),
Synset('store.n.02'),
Synset('credit.n.02'),
Synset('money.n.01'),
Synset('currency.n.01'),
Synset('purse.n.02'),
Synset('franc.n.01'),
Synset('cent.n.01')]
>>> wn.lemmas('imali', lang='xho')
[Lemma('finance.n.03.imali'),
Lemma('wealth.n.04.imali'),
Lemma('capital.n.01.imali'),
Lemma('store.n.02.imali'),
Lemma('credit.n.02.imali'),
Lemma('money.n.01.imali'),
Lemma('currency.n.01.imali'),
Lemma('purse.n.02.imali'),
Lemma('franc.n.01.imali'),
Lemma('cent.n.01.imali')]
>>> wn.synset('wealth.n.04').lemma_names('xho')
['imali']
>>> lemma = wn.lemma('wealth.n.04.imali', lang='xho')
>>> lemma.lang()
'xho'
>>> wn.synsets('tshifanyiso',lang=('ven'))
[Synset('picture.n.05'),
Synset('word_picture.n.01'),
Synset('portrayal.n.01')]
>>> wn.lemmas('tshifanyiso', lang='ven')
[Lemma('picture.n.05.tshifanyiso'),
Lemma('word_picture.n.01.tshifanyiso'),
Lemma('portrayal.n.01.tshifanyiso')]
>>> wn.synset('picture.n.05').lemma_names('ven')
['tshifanyiso']
>>> lemma = wn.lemma('picture.n.05.tshifanyiso', lang='ven')
>>> whole_lemma.lang()
'ven'
The word taelo in Sepedi is related to
- tagafalo
- molao
- tlhalošo
words = set()
synsets = wn.synsets('taelo',lang=('nso'))
for synset in synsets: # synset is in english
for hypo in synset.hyponyms():
for lemma in hypo.lemmas("nso"):
words.add(lemma.name())
print('taelo', '---', words)
taelo --- {'taelo', 'tagafalo', 'molao', 'tlhalošo'}
Library distributed under the MIT license. Data is distributed under the Creative Commons Attribution 4.0 license.