Skip to content

Releases: JohnSnowLabs/spark-nlp

Spark NLP 4.2.8: Patch release

24 Jan 18:22
Compare
Choose a tag to compare

📢 Overview

Spark NLP 4.2.8 🚀 comes with some important bug fixes and improvements. As a result, we highly recommend to update to this latest version if you are using Spark NLP 4.2.x.

As always, we would like to thank our community for their feedback, questions, and feature requests. 🎉


⭐ 🐛 Bug Fixes & Improvements

  • Fix the issue with optional keys (labels) in metadata when using XXXForSequenceClassitication annotators. This fixes Some(neg) -> 0.13602075 as neg -> 0.13602075 to be in harmony with all the other classifiers. #13396

before 4.2.8:

+-----------------------------------------------------------------------------------------------+
|label                                                                                          |
+-----------------------------------------------------------------------------------------------+
|[{category, 0, 87, pos, {sentence -> 0, Some(neg) -> 0.13602075, Some(pos) -> 0.8639792}, []}] |
|[{category, 0, 47, neg, {sentence -> 0, Some(neg) -> 0.7505674, Some(pos) -> 0.24943262}, []}] |
|[{category, 0, 17, pos, {sentence -> 0, Some(neg) -> 0.31065974, Some(pos) -> 0.6893403}, []}] |
|[{category, 0, 71, neg, {sentence -> 0, Some(neg) -> 0.5079189, Some(pos) -> 0.4920811}, []}]  |
+-----------------------------------------------------------------------------------------------+

after 4.2.8:

+-----------------------------------------------------------------------------------+
|label                                                                              |
+-----------------------------------------------------------------------------------+
|[{category, 0, 87, pos, {sentence -> 0, neg -> 0.13602075, pos -> 0.8639792}, []}] |
|[{category, 0, 47, neg, {sentence -> 0, neg -> 0.7505674, pos -> 0.24943262}, []}] |
|[{category, 0, 17, pos, {sentence -> 0, neg -> 0.31065974, pos -> 0.6893403}, []}] |
|[{category, 0, 71, neg, {sentence -> 0, neg -> 0.5079189, pos -> 0.4920811}, []}]  |
+-----------------------------------------------------------------------------------+
  • Introducing a config to skip LightPipeline validation for inputCols on the Python side for projects depending on Spark NLP. This toggle should only be used for specific annotators that do not follow the convention of predefined inputAnnotatorTypes and outputAnnotatorType #13402

📖 Documentation


Installation

Python

#PyPI

pip install spark-nlp==4.2.8

Spark Packages

spark-nlp on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x (Scala 2.12):

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.2.8

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.2.8

GPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.2.8

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.2.8

M1

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-m1_2.12:4.2.8

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-m1_2.12:4.2.8

AArch64

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.2.8

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.2.8

Maven

spark-nlp on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp_2.12</artifactId>
    <version>4.2.8</version>
</dependency>

spark-nlp-gpu:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-gpu_2.12</artifactId>
    <version>4.2.8</version>
</dependency>

spark-nlp-m1:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-m1_2.12</artifactId>
    <version>4.2.8</version>
</dependency>

spark-nlp-aarch64:

<!-- https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64 -->
<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-aarch64_2.12</artifactId>
    <version>4.2.8</version>
</dependency>

FAT JARs

What's Changed

Full Changelog: 4.2.7...4.2.8

Spark NLP 4.2.7: Patch release

12 Jan 16:46
Compare
Choose a tag to compare

📢 Overview

Spark NLP 4.2.7 🚀 comes with some important bug fixes and improvements. As a result, we highly recommend to update to this latest version if you are using Spark NLP 4.2.x.

As always, we would like to thank our community for their feedback, questions, and feature requests. 🎉


🐛 ⭐ Bug Fixes & Enhancements

  • Fix outputAnnotatorType issue in pipelines with Finisher annotator. This change adds outputAnnotatorType to AnnotatorTransformer to avoid loading outputAnnotatorType attribute when a stage in pipeline does not use it.
  • Fix the wrong sentence index calculation in metadata by annotators in the pipeline when setExplodeSentences param was set to true in SentenceDetector annotator
  • Fix the issue in Tokenizer when a custom pattern is used with lookahead/-behinds and it has 0 width matches. This led to indexes not being calculated correctly
  • Fix missing to output embeddings in .fullAnnotate() method when parseEmbeddings param was set to True/true
  • Fix broken links to the Python API pages, as the generation of the PyDocs was slightly changed in a previous release. This makes the Python APIs accessible from the Annotators and Transformers pages like before
  • Change default values of explodeEntities and mergeEntities parameters to true in GraphExctraction annotator
  • Better error handling when there are empty paths/relations in GraphExctractionannotator. New message will better guide the user on how to configure GraphExtraction to output meaningful relationships
  • Removed the duplicated definition of method setWeightedDistPath from ContextSpellCheckerApproach

📖 Documentation


Installation

Python

#PyPI

pip install spark-nlp==4.2.7

Spark Packages

spark-nlp on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x (Scala 2.12):

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.2.7

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.2.7

GPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.2.7

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.2.7

M1

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-m1_2.12:4.2.7

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-m1_2.12:4.2.7

AArch64

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.2.7

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.2.7

Maven

spark-nlp on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp_2.12</artifactId>
    <version>4.2.7</version>
</dependency>

spark-nlp-gpu:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-gpu_2.12</artifactId>
    <version>4.2.7</version>
</dependency>

spark-nlp-m1:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-m1_2.12</artifactId>
    <version>4.2.7</version>
</dependency>

spark-nlp-aarch64:

<!-- https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64 -->
<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-aarch64_2.12</artifactId>
    <version>4.2.7</version>
</dependency>

FAT JARs

What's Changed

@dcecchini @Cabir40 @agsfer @gadde5300 @bunyamin-polat @rpranab @jdobes-cz @josejuanmartinez @diatrambitas @maziyarpanahi

Full Changelog: 4.2.6...4.2.7

Spark NLP 4.2.6: Patch release

21 Dec 09:54
Compare
Choose a tag to compare

⭐ Improvements

  • Updating Spark & PySpark dependencies from 3.2.1 to 3.2.3 in provided scripts and in all the documentation

🐛 Bug Fixes

  • Fix the broken TypedDependencyParserApproach and TypedDependencyParserModel annotators used in Python (this bug was introduced in 4.2.5 release)
  • Fix the broken Python API documentation

📖 Documentation


Installation

Python

#PyPI

pip install spark-nlp==4.2.6

Spark Packages

spark-nlp on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x (Scala 2.12):

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.2.6

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.2.6

GPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.2.6

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.2.6

M1

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-m1_2.12:4.2.6

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-m1_2.12:4.2.6

AArch64

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.2.6

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.2.6

Maven

spark-nlp on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp_2.12</artifactId>
    <version>4.2.6</version>
</dependency>

spark-nlp-gpu:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-gpu_2.12</artifactId>
    <version>4.2.6</version>
</dependency>

spark-nlp-m1:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-m1_2.12</artifactId>
    <version>4.2.6</version>
</dependency>

spark-nlp-aarch64:

<!-- https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64 -->
<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-aarch64_2.12</artifactId>
    <version>4.2.6</version>
</dependency>

FAT JARs

What's Changed

Contributors

'@gadde5300 @diatrambitas @Cabir40 @josejuanmartinez @danilojsl @jsl-builder @DevinTDHa @maziyarpanahi @dcecchini @agsfer '

Full Changelog: 4.2.5...4.2.6

Spark NLP 4.2.5: New CamemBERT for sequence classification, better pipeline validation in LightPipeline, new Databricks 11.3 runtime, new EMR 6.8/6.9 versions with Spark 3.3, updated notebooks with latest TensorFlow 2.11, 400+ state-of-the-art models and many more!

16 Dec 09:03
Compare
Choose a tag to compare

📢 Overview

Spark NLP 4.2.5 🚀 comes with a new CamemBERT for sequence classification annotator (multi-class & multi-label), new pipeline validation for LightPipeline in Python, 26 updated noteooks to use the latest TensorFlow and Transformers libraries, support for new Databricks 11.3 runtime, support for new EMR versions of 6.8 and 6.9 (only EMR versions with Spark 3.3), over 400+ state-of-the-art multi-lingual pretrained models, and bug fixes.

Do not forget to visit Models Hub with over 11700+ free and open-source models & pipelines. As always, we would like to thank our community for their feedback, questions, and feature requests. 🎉


⭐ New Features & improvements

  • NEW: Introducing CamemBertForSequenceClassification annotator in Spark NLP 🚀. CamemBertForSequenceClassification can load CamemBERT Models with sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks. This annotator is compatible with all the models trained/fine-tuned by using CamembertForSequenceClassification for PyTorch or TFCamembertForSequenceClassification for TensorFlow in HuggingFace 🤗
  • NEW: Add AnnotatorType validation in Spark NLP LightPipeline. Currently, a misconfiguration of inputCols in an annotator in a pipeline raises an exception when using transform method, but in LightPipeline it only outputs empty values. This behavior can confuse users, this change introduces a validation that will raise an exception now in LightPipeline too.
    • Add outputAnnotatorType for all annotators in Python
    • Add inputAnnotatorTypes and outputAnnotatorType requirement validation for all subclasses derived from AnnotatorApproach and AnnotatorModel
    • Adding AnnotatorType validation in LightPipeline
  • NEW: Migrate 26 notenooks to import external Transformer models into Spark NLP. These notebooks now come with latest TensorFlow 2.11.0 and HuggingFace 4.25.1 releases. The notebooks also have TF signatures with data input types explicitly set to guarantee model sanity once imported into Spark NLP
  • Add validation for the number and type of columns set in TFNerDLGraphBuilder annotator. In efforts to avoid wrong definition of columns when using Spark NLP annotators in Python
  • Add more details to Alphabet error message in EntityRuler annotator to better guide users
  • Add instructions on how to resolve RocksDB incompatibilities when using Spark NLP with an M1 machine
  • Welcoming new Databricks runtimes support
    • 11.3
    • 11.3 ML
    • 11.3 GPU
  • Welcoming new EMR versions support
    • 6.8.0
    • 6.9.0
  • Refactor and implement a better error handling in ResourceDownloader. This change removes getObjectFromS3 allowing AWS SDK to rise the correspondent error. In addition, this change also refactors ResourceDownloader to reflect the intention of each credential type on the downloader
  • Implement full build and test of all unit tests base on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x major releases
  • UpdateUpgrade sbt-assembly to 1.2.0 that comes with lots of performance improvements. This benefits those who are trying to package Spark NLP as a Fat JAR
  • Update sbt to 1.8.0 with improvements and bug fixes, but mostly for CVEs fixes:
  • Use the new withIncludeScala in assemblyOption instead of value

🐛 Bug Fixes

  • Fix an issue with the BigTextMatcher Annotator, where it would not match entities with overlapping definitions. For Example, if both lung and lung cancer are defined, lung would not be matched in a given text. This was due to an abstraction error of one of the subclasses of the BigTextMatcher during construction of the underlying data structure
  • Fix indexing issue for RegexTokenizer annotator. If the document was split into sentences, the index of the sentence inside the document was not taken into consideration for the indexes of the tokens. This would lead to further issues down the pipeline, where tokens would be filtered while unpacking them for other Annotators
  • Refactor the Resolvers object in Spark NLP's dependency to avoid the conflict with the Resolvers inside the new sbt

🛑 Known Issues

  • TypedDependencyParserModel annotator fails in Python in this release (will be fixed in 4.2.6 release next week)

Models

Spark NLP 4.2.5 comes with 400+ state-of-the-art pre-trained transformer models in many languages.

Featured Models

Model Name Lang
RoBertaForSequenceClassification roberta_classifier_autotrain_neurips_chanllenge_1287149282 en
RoBertaForSequenceClassification roberta_classifier_autonlp_imdb_rating_625417974 en
RoBertaForSequenceClassification RoBertaForSequenceClassification bn
RoBertaForSequenceClassification roberta_classifier_autotrain_citizen_nlu_hindi_1370952776 hi
RoBertaForSequenceClassification roberta_classifier_detect_acoso_twitter es
RoBertaForQuestionAnswering roberta_qa_deepset_base_squad2 en
RoBertaForQuestionAnswering roberta_qa_icebert is
RoBertaForQuestionAnswering roberta_qa_mrm8488_base_bne_finetuned_s_c es
RoBertaForQuestionAnswering roberta_qa_base_bne_squad2 es
BertEmbeddings bert_embeddings_rbt3 zh
BertEmbeddings bert_embeddings_base_it_cased it
BertEmbeddings bert_embeddings_base_indonesian_522m id
BertEmbeddings bert_embeddings_base_german_uncased `de
BertEmbeddings bert_embeddings_base_japanese_char ja
BertEmbeddings bert_embeddings_bangla_base bn
BertEmbeddings bert_embeddings_base_arabertv01 ar

Spark NLP covers the following languages:

English ,Multilingual ,Afrikaans ,Afro-Asiatic languages ,Albanian ,Altaic languages ,American Sign Language ,Amharic ,Arabic ,Argentine Sign Language ,Armenian ,Artificial languages ,Atlantic-Congo languages ,Austro-Asiatic languages ,Austronesian languages ,Azerbaijani ,Baltic languages ,Bantu languages ,Basque ,Basque (family) ,Belarusian ,Bemba (Zambia) ,Bengali, Bangla ,Berber languages ,Bihari ,Bislama ,Bosnian ,Brazilian Sign Language ,Breton ,Bulgarian ,Catalan ,Caucasian languages ,Cebuano ,Celtic languages ,Central Bikol ,Chichewa, Chewa, Nyanja ,Chilean Sign Language ,Chinese ,Chuukese ,Colombian Sign Language ,Congo Swahili ,Croatian ,Cushitic languages ,Czech ,Danish ,Dholuo, Luo (Kenya and Tanzania) ,Dravidian languages ,Dutch ,East Slavic languages ,Eastern Malayo-Polynesian languages ,Efik ,Esperanto ,Estonian ,Ewe ,Fijian ,Finnish ,Finnish Sign Language ,Finno-Ugrian languages ,French ,French-based creoles and pidgins ,Ga ,Galician ,Ganda ,Georgian ,German ,Germanic languages ,Gilbertese ,Greek (modern) ,Greek languages ,Gujarati ,Gun ,Haitian, Haitian Creole ,Hausa ,Hebrew (modern) ,Hiligaynon ,Hindi ,Hiri Motu ,Hungarian ,Icelandic ,Igbo ,Iloko ,Indic languages ,Indo-European languages ,Indo-Iranian languages ,Indonesian ,Irish ,Isoko ,Isthmus Zapotec ,Italian ,Italic languages ,Japanese ,Japanese ,Kabyle ,Kalaallisut, Greenlandic ,Kannada ,Kaonde ,Kinyarwanda ,Kirundi ,Kongo ,Korean ,Kwangali ,Kwanyama, Kuanyama ,Latin ,Latvian ,Lingala ,Lithuanian ,Louisiana Creole ,Lozi ,Luba-Katanga ,Luba-Lulua ,Lunda ,Lushai ,Luvale ,Macedonian ,Malagasy ,Malay ,Malayalam ,Malayo-Polynesian languages ,Maltese ,Manx ,Marathi (Marāṭhī) ,Marshallese ,Mexican Sign Language ,Mon-Khmer languages ,Morisyen ,Mossi ,Multiple languages ,Ndonga ,Nepali ,Niger-Kordofanian languages ,`N...

Read more

Spark NLP 4.2.4: Introducing support for GCP storage for pre-trained models, update to TensorFlow 2.7.4 with CVEs fixes, improvements, and bug fixes

28 Nov 19:01
Compare
Choose a tag to compare

📢 Overview

Spark NLP 4.2.4 🚀 comes with new support for GCP storage to automatically download and load models & pipelines via setting the cache_pretrained path, update to TensorFlow 2.7.4 with security patch fixes, lots of improvements in our documentation, improvements, and bug fixes.

Do not forget to visit Models Hub with over 11400+ free and open-source models & pipelines. As always, we would like to thank our community for their feedback, questions, and feature requests. 🎉


⭐ New Features & improvements

  • Introducing support for GCP storage to automatically download and load pre-trained models/pipelines from cache_pretrained directory
  • Update to TensorFlow 2.7.4 with bug and CVEs fixes. Details about bugs and CVEs fixes: 417e2a1
  • Improve error handling while importing external TensorFlow models into Spark NLP
  • Improve error messages when importing external models from remote storages like DBFS, S3, and HDFS
  • Update documentation on how to use testDataset param in NerDLApproach, ClassifierDLApproach, MultiClassifierDLApproach, and SentimentDLApproach
  • Update installation instructions for the Apple M1 chip
  • Add support for future decoder-encoder models with 2 separated models

🐛 Bug Fixes

  • Add missing setPreservePosition in NerConverter
  • Add missing inputAnnotatorTypes to BigTextMatcher, ViveknSentimentModel, and NerConverter annotators
  • Fix all wrong example codes provided for LemmatizerModel in Models Hub
  • Fix the t5_grammar_error_corrector model to be compatible with Spark NLP 4.0+
  • Fix provided notebook to import Longformer models from Hugging Face into Spark NLP

📓 New Notebooks

Spark NLP Notebooks Colab
Spark NLP Conf Dowbload and Load Model from GCP Storage Open In Colab
LongformerEmbeddings HuggingFace in Spark NLP - Longformer Open In Colab

📖 Documentation


Installation

Python

#PyPI

pip install spark-nlp==4.2.4

Spark Packages

spark-nlp on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x (Scala 2.12):

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.2.4

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.2.4

GPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.2.4

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.2.4

M1

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-m1_2.12:4.2.4

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-m1_2.12:4.2.4

AArch64

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.2.4

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.2.4

Maven

spark-nlp on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp_2.12</artifactId>
    <version>4.2.4</version>
</dependency>

spark-nlp-gpu:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-gpu_2.12</artifactId>
    <version>4.2.4</version>
</dependency>

spark-nlp-m1:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-m1_2.12</artifactId>
    <version>4.2.4</version>
</dependency>

spark-nlp-aarch64:

<!-- https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64 -->
<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-aarch64_2.12</artifactId>
    <version>4.2.4</version>
</dependency>

FAT JARs

What's Changed

Full Changelog: 4.2.3...4.2.4

Spark NLP 4.2.1: Over 230 state-of-the-art Transformer Vision (ViT) pretrained pipelines, new multi-lingual support for Word Segmentation, add LightPipeline support to Automatic Speech Recognition pipelines, support for processed audio files in type Double for Wav2Vec2, and bug fixes

28 Nov 18:14
Compare
Choose a tag to compare

📢 Overview

Spark NLP 4.2.1 🚀 comes with a new multi-lingual support for Word Segmentation mostly used for (but not limited to) Chinese, Japanese, Korean, and so on, adding Automatic Speech Recognition (ASR) pipelines to LightPipeline arsenal for faster computation of smaller datasets without Apache Spark (e.g. RESTful API use case), adding support for processed audio files in type of Double in addition to Float for Wav2Vec2, over 230+ state-of-the-art Transformer Vision (ViT) pretrained pipelines for 1-line Image Classification, and bug fixes.

Do not forget to visit Models Hub with over 11400+ free and open-source models & pipelines. As always, we would like to thank our community for their feedback, questions, and feature requests. 🎉


⭐ New Features & improvements

  • NEW: Support for multi-lingual WordSegmenter. Add enableRegexTokenizer feature in WordSegmenter to support word segmentation within mixed and multi-lingual content #12854
  • NEW: Add support for Audio/ASR (Wav2Vec2) support to LightPipeline #12895
  • NEW: Add support for Double type in addition to Float type to AudioAssembler annotator #12904
  • Improve error handling in fullAnnotateImage for LightPipeline #12868
  • Add SpanBertCoref annotator to all docs #12889

Bug Fixes

  • Fix feeding fullAnnotate in Lightpipeline with a list that started to fail in 4.2.0 release
  • Fix exception in ContextSpellCheckerModel when updateVocabClass is used with append set to true #12875
  • Fix exception in Chunker annotator #12901

📓 New Notebooks

Spark NLP Notebooks Colab
SpanBertCorefModel Coreference Resolution with SpanBertCorefModel Open In Colab
WordSegmenter Train and inference multi-lingual Word Segmenter Open In Colab

Models

Spark NLP 4.2.1 comes with 230+ state-of-the-art pre-trained Transformer Vision (ViT) pipeline:

Featured Pipelines

Pipeline Name Lang
PretrainedPipeline pipeline_image_classifier_vit_base_patch16_224_finetuned_eurosat en
PretrainedPipeline pipeline_image_classifier_vit_base_beans_demo_v5 en
PretrainedPipeline pipeline_image_classifier_vit_animal_classifier_huggingface en
PretrainedPipeline pipeline_image_classifier_vit_Infrastructures en
PretrainedPipeline pipeline_image_classifier_vit_blocks en
PretrainedPipeline pipeline_image_classifier_vit_beer_whisky_wine_detection en
PretrainedPipeline pipeline_image_classifier_vit_base_xray_pneumonia en
PretrainedPipeline pipeline_image_classifier_vit_baseball_stadium_foods en
PretrainedPipeline pipeline_image_classifier_vit_dog_vs_chicken en

Check 460+ Transformer Vision (ViT) models & pipelines for Models Hub - Image Classification

Spark NLP covers the following languages:

English ,Multilingual ,Afrikaans ,Afro-Asiatic languages ,Albanian ,Altaic languages ,American Sign Language ,Amharic ,Arabic ,Argentine Sign Language ,Armenian ,Artificial languages ,Atlantic-Congo languages ,Austro-Asiatic languages ,Austronesian languages ,Azerbaijani ,Baltic languages ,Bantu languages ,Basque ,Basque (family) ,Belarusian ,Bemba (Zambia) ,Bengali, Bangla ,Berber languages ,Bihari ,Bislama ,Bosnian ,Brazilian Sign Language ,Breton ,Bulgarian ,Catalan ,Caucasian languages ,Cebuano ,Celtic languages ,Central Bikol ,Chichewa, Chewa, Nyanja ,Chilean Sign Language ,Chinese ,Chuukese ,Colombian Sign Language ,Congo Swahili ,Croatian ,Cushitic languages ,Czech ,Danish ,Dholuo, Luo (Kenya and Tanzania) ,Dravidian languages ,Dutch ,East Slavic languages ,Eastern Malayo-Polynesian languages ,Efik ,Esperanto ,Estonian ,Ewe ,Fijian ,Finnish ,Finnish Sign Language ,Finno-Ugrian languages ,French ,French-based creoles and pidgins ,Ga ,Galician ,Ganda ,Georgian ,German ,Germanic languages ,Gilbertese ,Greek (modern) ,Greek languages ,Gujarati ,Gun ,Haitian, Haitian Creole ,Hausa ,Hebrew (modern) ,Hiligaynon ,Hindi ,Hiri Motu ,Hungarian ,Icelandic ,Igbo ,Iloko ,Indic languages ,Indo-European languages ,Indo-Iranian languages ,Indonesian ,Irish ,Isoko ,Isthmus Zapotec ,Italian ,Italic languages ,Japanese ,Japanese ,Kabyle ,Kalaallisut, Greenlandic ,Kannada ,Kaonde ,Kinyarwanda ,Kirundi ,Kongo ,Korean ,Kwangali ,Kwanyama, Kuanyama ,Latin ,Latvian ,Lingala ,Lithuanian ,Louisiana Creole ,Lozi ,Luba-Katanga ,Luba-Lulua ,Lunda ,Lushai ,Luvale ,Macedonian ,Malagasy ,Malay ,Malayalam ,Malayo-Polynesian languages ,Maltese ,Manx ,Marathi (Marāṭhī) ,Marshallese ,Mexican Sign Language ,Mon-Khmer languages ,Morisyen ,Mossi ,Multiple languages ,Ndonga ,Nepali ,Niger-Kordofanian languages ,Nigerian Pidgin ,Niuean ,North Germanic languages ,Northern Sotho, Pedi, Sepedi ,Norwegian ,Norwegian Bokmål ,Norwegian Nynorsk ,Nyaneka ,Oromo ,Pangasinan ,Papiamento ,Persian (Farsi) ,Peruvian Sign Language ,Philippine languages ,Pijin ,Pohnpeian ,Polish ,Portuguese ,Portuguese-based creoles and pidgins ,Punjabi (Eastern) ,Romance languages ,Romanian ,Rundi ,Russian ,Ruund ,Salishan languages ,Samoan ,San Salvador Kongo ,Sango ,Semitic languages ,Serbo-Croatian ,Seselwa Creole French ,Shona ,Sindhi ,Sino-Tibetan languages ,Slavic languages ,Slovak ,Slovene ,Somali ,South Caucasian languages ,South Slavic languages ,Southern Sotho ,Spanish ,Spanish Sign Language ,Sranan Tongo ,Swahili ,Swati ,Swedish ,Tagalog ,Tahitian ,Tai ,Tamil ,Telugu ,Tetela ,Tetun Dili ,Thai ,Tigrinya ,Tiv ,Tok Pisin ,Tonga (Tonga Islands) ,Tonga (Zambia) ,Tsonga ,Tswana ,Tumbuka ,Turkic languages ,Turkish ,Tuvalu ,Tzotzil ,Ukrainian ,Umbundu ,Uralic languages ,Urdu ,Venda ,Venezuelan Sign Language ,Vietnamese ,Wallisian ,Walloon ,Waray (Philippines) ,Welsh ,West Germanic languages ,West Slavic languages ,Western Malayo-Polynesian languages ,Wolaitta, Wolaytta ,Wolof ,Xhosa ,Yapese ,Yiddish ,Yoruba ,Yucatec Maya, Yucateco ,Zande (individual language) ,Zulu

The complete list of all 11000+ models & pipelines in 230+ languages is available on Models Hub


📖 Documentation

Read more

Spark NLP 4.2.3: Improved CoNLLGenerator annotator, new rules parameter in RegexMatcher, new IAnnotation feature for LightPipeline in Scala, and bug fixes

10 Nov 20:17
Compare
Choose a tag to compare

📢 Overview

Spark NLP 4.2.3 🚀 comes with new improvements to the CoNLLGenerator annotator, a new way to pass rules to the RegexMatcher annotator, unifying control over a number of columns in setInputCols between the Scala and Python, new documentation for our new IAnnotation feature for those who are using Spark NLP in Scala, and bug fixes.

Do not forget to visit Models Hub with over 11400+ free and open-source models & pipelines. As always, we would like to thank our community for their feedback, questions, and feature requests. 🎉


⭐ New Features & improvements

  • Adding metadata sentence key parameter in order to select which metadata field to use as a sentence for the CoNLLGenerator annotator
  • Include escaping in the CoNLLGenerator annotator when writing to CSV and preserve special char token
  • Add rules and delimiter parameters to RegexMatcher annotator to support string as input in addition to a file
regexMatcher = RegexMatcher() \
      .setRules(["\\d{4}\\/\\d\\d\\/\\d\\d,date", "\\d{2}\\/\\d\\d\\/\\d\\d,short_date"]) \
      .setDelimiter(",") \
      .setInputCols(["sentence"]) \
      .setOutputCol("regex") \
      .setStrategy("MATCH_ALL")
  • Implement a new control over a number of accepted columns in Python. This will sync the behavior between Scala and Python where the user sets more columns than allowed inside setInputCols while using Spark NLP in Python
  • Add documentation for the new IAnnotation feature for Scala users

Bug Fixes

  • Fix NotSerializableException when the WordEmbeddings annotator is used over the K8s cluster while setEnableInMemoryStorage is set to true
  • Fix a bug in the RegexTokenizer annotator when it outputs the wrong indexes if the pattern includes splits that are not followed by a space
  • Fix training module failing on EMR due to a bad Apache Spark version detection. The use of the following classes was fixed on EMR: CoNLL(), CoNLLU(), POS(), and PubTator()
  • Fix a bug in the CoNLLGenerator annotator where the token has non-int metadata
  • Fix the wrong SentencePiece model's name required for DeBertaForQuestionAnswering and DeBertaEmbeddings when importing models
  • Fix NaNs result in some ViTForImageClassification models/pipelines

📓 New Notebooks


📖 Documentation


Installation

Python

#PyPI

pip install spark-nlp==4.2.3

Spark Packages

spark-nlp on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x (Scala 2.12):

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.2.3

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.2.3

GPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.2.3

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.2.3

M1

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-m1_2.12:4.2.3

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-m1_2.12:4.2.3

AArch64

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.2.3

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.2.3

Maven

spark-nlp on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp_2.12</artifactId>
    <version>4.2.3</version>
</dependency>

spark-nlp-gpu:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-gpu_2.12</artifactId>
    <version>4.2.3</version>
</dependency>

spark-nlp-m1:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-m1_2.12</artifactId>
    <version>4.2.3</version>
</dependency>

spark-nlp-aarch64:

<!-- https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64 -->
<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-aarch64_2.12</artifactId>
    <version>4.2.3</version>
</dependency>

FAT JARs

What's Changed

Read more

Spark NLP 4.2.2: Support DBFS, HDFS, and S3 for importing external models, unifying LightPipeline APIs across supported languages for Image Classification, new fullAnnotateImage for Scala, new fullAnnotateImageJava for Java, support LightPipeline for QuestionAnswering pre-trained pipelines, and bug fixes

27 Oct 18:07
Compare
Choose a tag to compare

📢 Overview

Spark NLP 4.2.2 🚀 comes with support for DBFS, HDFS, and S3 in addition to local file systems when you are importing external models from TF Hub and Hugging Face, unifying LightPipeline APIs across Scala, Java, and Python languages for Image Classification, the new fullAnnotateImage for Scala, the new fullAnnotateImageJava for Java, the support for LightPipeline for QuestionAnswering pre-trained pipelines, and bug fixes.

Do not forget to visit Models Hub with over 11400+ free and open-source models & pipelines. As always, we would like to thank our community for their feedback, questions, and feature requests. 🎉


⭐ New Features & improvements

  • Add support for importing TensorFlow SavedModel from remote storages like DBFS, S3, and HDFS. From this release, you can import models saved from TF Hub and HuggingFace on a remote storage
  • Add support for fullAnnotate in LightPipeline for the path of images in Scala
  • Add fullAnnotate method in PretrainedPipeline for Scala
  • Add fullAnnotateJava method in PretrainedPipeline for Java
  • Add fullAnnotateImage to PretrainedPipeline for Scala
  • Add fullAnnotateImageJava to PretrainedPipeline for Java
  • Add support for Question Answering in fullAnnotate method in PretrainedPipeline
  • Add Predicted Entities to all Vision Transformers (ViT) models and pipelines

Bug Fixes

  • Unify the annotatorType name in Python and Scala for Spark schema in Annotation, AnnotationImage, and AnnotationAudio
  • Fix missing indexes in the RecursiveTokenizer annotator affecting downstream NLP tasks in the pipeline

📓 New Notebooks

Spark NLP Notebooks Colab
WordSegmenter Import External SavedModel From Remote Open In Colab

📖 Documentation


Installation

Python

#PyPI

pip install spark-nlp==4.2.2

Spark Packages

spark-nlp on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x (Scala 2.12):

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.2.2

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.2.2

GPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.2.2

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.2.2

M1

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-m1_2.12:4.2.2

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-m1_2.12:4.2.2

Maven

spark-nlp on Apache Spark 3.0.x, 3.1.x, 3.2.x, and 3.3.x:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp_2.12</artifactId>
    <version>4.2.2</version>
</dependency>

spark-nlp-gpu:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-gpu_2.12</artifactId>
    <version>4.2.2</version>
</dependency>

spark-nlp-m1:

<dependency>
    <groupId>com.johnsnowlabs.nlp</groupId>
    <artifactId>spark-nlp-m1_2.12</artifactId>
    <version>4.2.2</version>
</dependency>

FAT JARs

What's Changed

Contributors

@galiph @agsfer @pabla @josejuanmartinez @Cabir40 @maziyarpanahi @Meryem1425 @danilojsl @jsl-builder @jsl-models @ahmedlone127 @DevinTDHa @jdobes-cz @Damla-Gurbaz @Mary-Sci

New Contributors

Full Changelog: 4.2.1...4.2.2

Spark NLP 4.2.0: Wav2Vec2 for Automatic Speech Recognition (ASR), TAPAS for Table Question Answering, CamemBERT for Token Classification, new evaluation metrics for external datasets in all classifiers, much faster EntityRuler, over 3000+ state-of-the-art multi-lingual models & pipelines, and many more!

27 Sep 14:29
Compare
Choose a tag to compare

📢 Overview

For the first time ever we are delighted to announce Automatic Speech Recognition (ASR) support in Spark NLP by using state-of-the-art Wav2Vec2 models at scale 🚀. This release also comes with Table Question Answering by TAPAS, CamemBERT for Token Classification, support for an external test dataset during training of all classifiers, much faster EntityRuler, 3000+ state-of-the-art models, and other enhancements and bug fixes!

We are also celebrating crossing 11000+ free and open-source models & pipelines in our Models Hub. 🎉 As always, we would like to thank our community for their feedback, questions, and feature requests.


⭐ New Features & improvements

  • NEW: Introducing Wav2Vec2ForCTC annotator in Spark NLP 🚀. Wav2Vec2ForCTC can load Wav2Vec2 models for the Automatic Speech Recognition (ASR) task. Wav2Vec2 is a multi-modal model, that combines speech and text. It's the first multi-modal model of its kind we welcome in Spark NLP. This annotator is compatible with all the models trained/fine-tuned by using Wav2Vec2ForCTC for PyTorch or TFWav2Vec2ForCTC for TensorFlow models in HuggingFace 🤗 (#12767)

image

wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations

  • NEW: Introducing TapasForQuestionAnswering annotator in Spark NLP 🚀. TapasForQuestionAnswering can load TAPAS Models with a cell selection head and optional aggregation head on top for question-answering tasks on tables (linear layers on top of the hidden-states output to compute logits and optional logits_aggregation), e.g. for SQA, WTQ or WikiSQL-supervised tasks. TAPAS is a BERT-based model specifically designed (and pre-trained) for answering questions about tabular data. This annotator is compatible with all the models trained/fine-tuned by using TapasForQuestionAnswering for PyTorch or TFTapasForQuestionAnswering for TensorFlow models in HuggingFace 🤗

image

TAPAS: Weakly Supervised Table Parsing via Pre-training

  • NEW: Introducing CamemBertForTokenClassification annotator in Spark NLP 🚀. CamemBertForTokenClassification can load CamemBERT Models with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. This annotator is compatible with all the models trained/fine-tuned by using CamembertForTokenClassification for PyTorch or TFCamembertForTokenClassification for TensorFlow in HuggingFace 🤗
    (#12752)
  • Implementing setTestDataset to evaluate metrics on an external dataset during training of Text Classifiers in Spark NLP. This feature is similar to NerDLApproach where metrics are calculated on each Epoch and have been added to the following multi-class/multi-label text classifier annotators: ClassifierDLApproach, SentimentDLApproach, and MultiClassifierDLApproach (#12796)
  • Refactoring and improving EntityRuler annotator inference to up to 24x faster especially when used with a long list of labels/entities. We speed up the inference process by implementing the Aho-Corasick algorithm to match patterns in a string. This requires the following changes when using EntityRuler #12634
  • Add support for S3 storage in the cache_folder where models are downloaded, extracted, and loaded from. Previously, we only supported all local file systems, HDFS, and DBFS. This new feature is especially useful for users on Kubernetes clusters with no access to HDFS or any other distributed file systems (#12707)
  • Implementing lookaround functionalities in DocumentNormalizer annotator. Currently, DocumentNormalizer has both lookahead and lookbehind functionalities. To extend support for more complex normalizations, especially within the clinical text we are introducing the lookaround feature (#12735)
  • Implementing setReplaceEntities param to NerOverwriter annotator to replace all the NER labels (entities) with the given new labels (entities) (#12745)

Bug Fixes

  • Fix a bug in generating the NerDL graph by using TF v2. The previous graph generated by the TFGraphBuilder annotator resulted in an exception when the length of the sequence was 1. This issue has been resolved and the new graphs created by TFGraphBuilder won't have this issue anymore (#12636)
  • Fix a bug introduced in the 4.0.0 release between Transformer-based Word Embeddings annotators. In the 4.0.0 release, the following annotators were migrated to BatchAnnotate to improve their performance, especially on GPU. However, a bug was introduced in sentence indices which when it is combined with SentenceEmbeddings for Text Classifications tasks (ClassifierDLApproach, SentimentDLApproach, and ClassifierDLApproach) resulted in low accuracy: AlbertEmbeddings, CamemBertEmbeddings, DeBertaEmbeddings, DistilBertEmbeddings, LongformerEmbeddings, RoBertaEmbeddings, XlmRoBertaEmbeddings, and XlnetEmbeddings (#12641)
  • Add support for a list of questions and context in LightPipline. Previously, only one context and question at a time were supported in LightPipeline for Question Answering annotators. We have added support to fullAnnotate and annotate to receive two lists of questions and contexts (#12653)
  • Fix division by zero exception in the GPT2Transformer annotator when the setDoSample param was set to true (#12661)
  • Fix AttributeError when PretrainedPipeline is used in Python with ImageAssembler as one of the stages (#12813)

📓 New Notebooks

Spark NLP Notebooks Colab
Wav2Vec2ForCTC Automatic Speech Recognition in Spark NLP Open In Colab
ViTForImageClassification HuggingFace in Spark NLP - ViTForImageClassification Open In Colab
CamemBertForTokenClassification HuggingFace in Spark NLP - CamemBertForTokenClassification Open In Colab
ClassifierDLApproach ClassifierDL Train and Evaluate Open In Colab
MultiClassifierDLApproach MultiClassifierDL Train and Evaluate Open In Colab
SentimentDLApproach SentimentDL Train and Evaluate Open In Colab
Pretrained/cache_folder Download & Load Models From S3 Open In Colab
EntityRuler [EntityRuler](https://github.com/JohnSnowLabs/spark-nlp-workshop/...
Read more

Spark NLP 4.1.0: Vision Transformer (ViT) is here! The very first Computer Vision pipeline for the state-of-the-art Image Classification task, AWS Graviton/ARM64 support, new EMR & Databricks support, 1000+ state-of-the-art models, and more!

24 Aug 15:35
Compare
Choose a tag to compare

Overview

An Image is Worth 16x16 Words!

For the first time ever we are delighted to announce support for Image Classification in Spark NLP by using state-of-the-art Vision Transformer (ViT) models at scale. This release comes with official support for AWS Graviton and ARM64 processors, new Databricks and EMR support, and 1000+ state-of-the-art models.

Spark NLP 4.1 also celebrates crossing 8000+ free and open-source models & pipelines available on Models Hub. 🎉 As always, we would like to thank our community for their feedback, questions, and feature requests.


⭐ New Features & improvements

  • NEW: Introducing ViTForImageClassification annotator in Spark NLP 🚀. ViTForImageClassification can load Vision Transformer ViT Models with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. This annotator is compatible with all the models trained/fine-tuned by using ViTForImageClassification for PyTorch or TFViTForImageClassification for TensorFlow models in HuggingFace 🤗 (#11536)

An overview of the ViT model structure as introduced in Google Research’s original 2021 paper

data_df = spark.read.format("image") \
            .load(path="images/")

image_assembler = ImageAssembler() \
            .setInputCol("image") \
            .setOutputCol("image_assembler")

image_classifier = ViTForImageClassification \
    .pretrained() \
    .setInputCols("image_assembler") \
    .setOutputCol("class")

pipeline = Pipeline(stages=[
    image_assembler,
    image_classifier,
])

model = pipeline.fit(data_df)
  • NEW: Support for AWS Graviton/Graviton2 With up to 3x Better Price-Performance. For the first time, Spark NLP supports Graviton and ARM64 (ARMv8 above) processors. (#10939)
  • NEW: Introducing TFNerDLGraphBuilder annotator. TFNerDLGraphBuilder can be used to automatically detect the parameters of a needed NerDL graph and generate the graph within a pipeline when the default NER graphs are not suitable for your training datasets. TFNerDLGraphBuilder supports local, DBFS, and S3 file systems. (#10564)
  • Allow passing confidence scores from all XXXForTokenClassification annotators to NerConverter. It is now possible to access the confidence scores coming from the following annotators in NerConverter metadata (similar to NerDLModel): AlbertForTokenClassification, BertForTokenClassification, DeBertaForTokenClassification, DistilBertForTokenClassification, LongformerForTokenClassification, RoBertaForTokenClassification, XlmRoBertaForTokenClassification, XlnetForTokenClassification, and DeBertaForTokenClassification
  • Introducing PushToHub Python class to easily push public models & pipelines to Models Hub
  • Introducing fullAnnotateImage to existing LightPipeline to support ImageAssembler and ViTForImageClassification annotators in a Spark NLP pipeline. The fullAnnotateImage supports a path to images hosted locally, on DBFS, and S3.
light_pipeline = LightPipeline(model)
annotations_result = light_pipeline.fullAnnotateImage("images/hippopotamus.JPEG")
  • Welcoming a new EMR 6.x series to our Spark NLP family:
    • EMR 6.7.0 (now supports Apache Spark 3.2.1, Apache Hive 3.1.3, HUDI 0.11, PrestoDB 0.272, and Trino 0.378.)
  • Welcoming 3 new Databricks runtimes to our Spark NLP family:
  • Welcoming new AWS Graviton-enabled for Databricks runtime:

Models

Spark NLP 4.1.0 comes with 1000+ state-of-the-art pre-trained transformer models for Image Classifications, Token Classification, and Sequence Classification in many languages.

Featured Models

Model Name Lang
ViTForImageClassification image_classifier_vit_base_patch16_224 en
ViTForImageClassification image_classifier_vit_base_patch16_384 en
ViTForImageClassification image_classifier_vit_base_patch32_384 en
ViTForImageClassification image_classifier_vit_base_xray_pneumonia en
ViTForImageClassification image_classifier_vit_finetuned_chest_xray_pneumonia en
ViTForImageClassification image_classifier_vit_food en
ViTForImageClassification image_classifier_vit_base_food101 en
ViTForImageClassification image_classifier_vit_autotrain_dog_vs_food en
ViTForImageClassification image_classifier_vit_baseball_stadium_foods en
ViTForImageClassification image_classifier_vit_south_indian_foods en
ViTForImageClassification image_classifier_vit_denver_nyc_paris en
ViTForImageClassification image_classifier_vit_CarViT en

Check out 240 (ViT) models on Models Hub - Image Classification

Spark NLP covers the following languages:

English ,Multilingual ,Afrikaans ,Afro-Asiatic languages ,Albanian ,Altaic languages ,American Sign Language ,Amharic ,Arabic ,Argentine Sign Language ,Armenian ,Artificial languages ,Atlantic-Congo languages ,Austro-Asiatic languages ,Austronesian languages ,Azerbaijani ,Baltic languages ,Bantu languages ,Basque ,Basque (family) ,Belarusian ,Bemba (Zambia) ,Bengali, Bangla ,Berber languages ,Bihari ,Bislama ,Bosnian ,Brazilian Sign Language ,Breton ,Bulgarian ,Catalan ,Caucasian languages ,Cebuano ,Celtic languages ,Central Bikol ,Chichewa, Chewa, Nyanja ,Chilean Sign Language ,Chinese ,Chuukese ,Colombian Sign Language ,Congo Swahili ,Croatian ,Cushitic languages ,Czech ,Danish ,Dholuo, Luo (Kenya and Tanzania) ,Dravidian languages ,Dutch ,East Slavic languages ,Eastern Malayo-Polynesian languages ,Efik ,Esperanto ,Estonian ,Ewe ,Fijian ,Finnish ,Finnish Sign Language ,Finno-Ugrian languages ,French ,French-based creoles and pidgins ,Ga ,Galician ,Ganda ,Georgian ,German ,Germanic languages ,Gilbertese ,Greek (modern) ,Greek languages ,Gujarati ,Gun ,Haitian, Haitian Creole ,Hausa ,Hebrew (modern) ,Hiligaynon ,Hindi ,Hiri Motu ,Hungarian ,Icelandic ,Igbo ,Iloko ,Indic languages ,Indo-European languages ,Indo-Iranian languages ,Indonesian ,Irish ,Isoko ,Isthmus Zapotec ,Italian ,Italic languages ,Japanese ,Japanese ,Kabyle ,Kalaallisut, Greenlandic ,Kannada ,Kaonde ,Kinyarwanda ,Kirundi ,Kongo ,Korean ,Kwangali ,Kwanyama, Kuanyama ,Latin ,Latvian ,Lingala ,Lithuanian ,Louisiana Creole ,Lozi ,Luba-Katanga ,Luba-Lulua ,Lunda ,Lushai ,Luvale ,Macedonian ,Malagasy ,Malay ,Malayalam ,Malayo-Polynesian languages ,Maltese ,Manx ,Marathi (Marāṭhī) ,Marshallese ,Mexican Sign Language ,Mon-Khmer languages ,Morisyen ,Mossi ,Multiple languages ,Ndonga ,Nepali ,Niger-Kordofanian languages ,Nigerian Pidgin ,Niuean ,North Germanic languages ,Northern Sotho, Pedi, Sepedi ,Norwegian ,Norwegian Bokmål ,Norwegian Nynorsk ,Nyaneka ,Oromo ,Pangasinan ,Papiamento ,Persian (Farsi) ,Peruvian Sign Language ,Philippine languages ,Pijin ,Pohnpeian ,Polish ,Portuguese ,Portuguese-based creoles and pidgins ,Punjabi (Eastern) ,Romance languages ,Romanian ,Rundi ,Russian ,Ruund ,Salishan languages ,Samoan ,San Salvador Kongo ,Sango ,Semitic languages ,Serbo-Croatian ,Seselwa Creole French ,Shona ,Sindhi ,Sino-Tibetan languages ,Slavic languages ,Slovak ,Slovene ,Somali ,South Caucasian languages ,South Slavic languages ,Southern Sotho ,Spanish ,Spanish Sign Language ,Sranan Tongo ,Swahili ,Swati ,Swedish ,Tagalog ,Tahitian ,Tai ,Tamil ,Telugu ,Tetela ,Tetun Dili ,Thai ,Tigrinya ,`...

Read more