Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Introducing BertForMultipleChoice transformer #14435

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion python/sparknlp/annotator/classifier_dl/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,4 +54,4 @@
from sparknlp.annotator.classifier_dl.mpnet_for_token_classification import *
from sparknlp.annotator.classifier_dl.albert_for_zero_shot_classification import *
from sparknlp.annotator.classifier_dl.camembert_for_zero_shot_classification import *

from sparknlp.annotator.classifier_dl.bert_for_multiple_choice import *
161 changes: 161 additions & 0 deletions python/sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
# Copyright 2017-2024 John Snow Labs
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from sparknlp.common import *

class BertForMultipleChoice(AnnotatorModel,
HasCaseSensitiveProperties,
HasBatchedAnnotate,
HasEngine,
HasMaxSentenceLengthLimit):
"""BertForMultipleChoice can load BERT Models with a multiple choice classification head on top
(a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.

Pretrained models can be loaded with :meth:`.pretrained` of the companion
object:

>>> spanClassifier = BertForMultipleChoice.pretrained() \\
... .setInputCols(["document_question", "document_context"]) \\
... .setOutputCol("answer")

The default model is ``"bert_base_uncased_multiple_choice"``, if no name is
provided.

For available pretrained models please see the `Models Hub
<https://sparknlp.org/models?task=Multiple+Choice>`__.

To see which models are compatible and how to import them see
`Import Transformers into Spark NLP 🚀
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.

====================== ======================
Input Annotation types Output Annotation type
====================== ======================
``DOCUMENT, DOCUMENT`` ``CHUNK``
====================== ======================

Parameters
----------
batchSize
Batch size. Large values allows faster processing but requires more
memory, by default 8
caseSensitive
Whether to ignore case in tokens for embeddings matching, by default
False
maxSentenceLength
Max sentence length to process, by default 512

Examples
--------
>>> import sparknlp
>>> from sparknlp.base import *
>>> from sparknlp.annotator import *
>>> from pyspark.ml import Pipeline
>>> documentAssembler = MultiDocumentAssembler() \\
... .setInputCols(["question", "context"]) \\
... .setOutputCols(["document_question", "document_context"])
>>> questionAnswering = BertForMultipleChoice.pretrained() \\
... .setInputCols(["document_question", "document_context"]) \\
... .setOutputCol("answer") \\
... .setCaseSensitive(False)
>>> pipeline = Pipeline().setStages([
... documentAssembler,
... questionAnswering
... ])
>>> data = spark.createDataFrame([["The Eiffel Tower is located in which country??", "Germany, France, Italy"]]).toDF("question", "context")
>>> result = pipeline.fit(data).transform(data)
>>> result.select("answer.result").show(truncate=False)
+--------------------+
|result |
+--------------------+
|[France] |
+--------------------+
"""
name = "BertForMultipleChoice"

inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.DOCUMENT]

outputAnnotatorType = AnnotatorType.CHUNK

choicesDelimiter = Param(Params._dummy(),
"choicesDelimiter",
"Delimiter character use to split the choices",
TypeConverters.toString)

def setChoicesDelimiter(self, value):
"""Sets delimiter character use to split the choices

Parameters
----------
value : string
Delimiter character use to split the choices
"""
return self._set(caseSensitive=value)

@keyword_only
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.BertForMultipleChoice",
java_model=None):
super(BertForMultipleChoice, self).__init__(
classname=classname,
java_model=java_model
)
self._setDefault(
batchSize=4,
maxSentenceLength=512,
caseSensitive=False,
choicesDelimiter = ","
)

@staticmethod
def loadSavedModel(folder, spark_session):
"""Loads a locally saved model.

Parameters
----------
folder : str
Folder of the saved model
spark_session : pyspark.sql.SparkSession
The current SparkSession

Returns
-------
BertForQuestionAnswering
The restored model
"""
from sparknlp.internal import _BertMultipleChoiceLoader
jModel = _BertMultipleChoiceLoader(folder, spark_session._jsparkSession)._java_obj
return BertForMultipleChoice(java_model=jModel)

@staticmethod
def pretrained(name="bert_base_uncased_multiple_choice", lang="en", remote_loc=None):
"""Downloads and loads a pretrained model.

Parameters
----------
name : str, optional
Name of the pretrained model, by default
"bert_base_uncased_multiple_choice"
lang : str, optional
Language of the pretrained model, by default "en"
remote_loc : str, optional
Optional remote address of the resource, by default None. Will use
Spark NLPs repositories otherwise.

Returns
-------
BertForQuestionAnswering
The restored model
"""
from sparknlp.pretrained import ResourceDownloader
return ResourceDownloader.downloadModel(BertForMultipleChoice, name, lang, remote_loc)
7 changes: 7 additions & 0 deletions python/sparknlp/internal/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -113,6 +113,13 @@ def __init__(self, path, jspark):
jspark,
)

class _BertMultipleChoiceLoader(ExtendedJavaWrapper):
def __init__(self, path, jspark):
super(_BertMultipleChoiceLoader, self).__init__(
"com.johnsnowlabs.nlp.annotators.classifier.dl.BertForMultipleChoice.loadSavedModel",
path,
jspark,
)

class _DeBERTaLoader(ExtendedJavaWrapper):
def __init__(self, path, jspark):
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
# Copyright 2017-2024 John Snow Labs
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import pytest

from sparknlp.annotator import *
from sparknlp.base import *
from test.util import SparkContextForTest


class BertForMultipleChoiceTestSetup(unittest.TestCase):
def setUp(self):
self.spark = SparkContextForTest.spark
self.question = "The Eiffel Tower is located in which country?"
self.choices = "Germany, France, Italy"

self.spark = SparkContextForTest.spark
empty_df = self.spark.createDataFrame([[""]]).toDF("text")

document_assembler = MultiDocumentAssembler() \
.setInputCols(["question", "context"]) \
.setOutputCols(["document_question", "document_context"])

bert_for_multiple_choice = BertForMultipleChoice.pretrained() \
.setInputCols(["document_question", "document_context"]) \
.setOutputCol("answer") \

pipeline = Pipeline(stages=[document_assembler, bert_for_multiple_choice])

self.pipeline_model = pipeline.fit(empty_df)


@pytest.mark.slow
class BertForMultipleChoiceTest(BertForMultipleChoiceTestSetup, unittest.TestCase):

def setUp(self):
super().setUp()
self.data = self.spark.createDataFrame([[self.question, self.choices]]).toDF("question","context")
self.data.show(truncate=False)

def test_run(self):
result_df = self.pipeline_model.transform(self.data)
result_df.show(truncate=False)
for row in result_df.collect():
self.assertTrue(row["answer"][0].result != "")


@pytest.mark.slow
class LightBertForMultipleChoiceTest(BertForMultipleChoiceTestSetup, unittest.TestCase):

def setUp(self):
super().setUp()

def runTest(self):
light_pipeline = LightPipeline(self.pipeline_model)
annotations_result = light_pipeline.fullAnnotate(self.question,self.choices)
print(annotations_result)
for result in annotations_result:
self.assertTrue(result["answer"][0].result != "")

result = light_pipeline.annotate(self.question,self.choices)
print(result)
self.assertTrue(result["answer"] != "")
92 changes: 91 additions & 1 deletion src/main/scala/com/johnsnowlabs/ml/ai/BertClassification.scala
Original file line number Diff line number Diff line change
Expand Up @@ -130,7 +130,7 @@ private[johnsnowlabs] class BertClassification(

// we need the original form of the token
// let's lowercase if needed right before the encoding
val basicTokenizer = new BasicTokenizer(caseSensitive = true, hasBeginEnd = false)
val basicTokenizer = new BasicTokenizer(caseSensitive = caseSensitive, hasBeginEnd = false)
val encoder = new WordpieceEncoder(vocabulary)
val sentences = docs.map { s => Sentence(s.result, s.begin, s.end, 0) }

Expand Down Expand Up @@ -546,6 +546,15 @@ private[johnsnowlabs] class BertClassification(
(startScores, endScores)
}

override def tagSpanMultipleChoice(batch: Seq[Array[Int]]): Array[Float] = {
val logits = detectedEngine match {
case ONNX.name => computeLogitsMultipleChoiceWithOnnx(batch)
case Openvino.name => computeLogitsMultipleChoiceWithOv(batch)
}

calculateSoftmax(logits)
}

private def computeLogitsWithTF(
batch: Seq[Array[Int]],
maxSentenceLength: Int): (Array[Float], Array[Float]) = {
Expand Down Expand Up @@ -732,6 +741,87 @@ private[johnsnowlabs] class BertClassification(
}
}

private def computeLogitsMultipleChoiceWithOnnx(batch: Seq[Array[Int]]): Array[Float] = {
val sequenceLength = batch.head.length
val inputIds = Array(batch.map(x => x.map(_.toLong)).toArray)
val attentionMask = Array(
batch.map(sentence => sentence.map(x => if (x == 0L) 0L else 1L)).toArray)
val tokenTypeIds = Array(batch.map(_ => Array.fill(sequenceLength)(0L)).toArray)

val (ortSession, ortEnv) = onnxWrapper.get.getSession(onnxSessionOptions)
val tokenTensors = OnnxTensor.createTensor(ortEnv, inputIds)
val maskTensors = OnnxTensor.createTensor(ortEnv, attentionMask)
val segmentTensors = OnnxTensor.createTensor(ortEnv, tokenTypeIds)

val inputs =
Map(
"input_ids" -> tokenTensors,
"attention_mask" -> maskTensors,
"token_type_ids" -> segmentTensors).asJava

try {
val output = ortSession.run(inputs)
try {

val logits = output
.get("logits")
.get()
.asInstanceOf[OnnxTensor]
.getFloatBuffer
.array()

tokenTensors.close()
maskTensors.close()
segmentTensors.close()

logits
} finally if (output != null) output.close()
} catch {
case e: Exception =>
// Log the exception as a warning
println("Exception in computeLogitsMultipleChoiceWithOnnx: ", e)
// Rethrow the exception to propagate it further
throw e
}
}

private def computeLogitsMultipleChoiceWithOv(batch: Seq[Array[Int]]): Array[Float] = {
val (numChoices, sequenceLength) = (batch.length, batch.head.length)
// batch_size, num_choices, sequence_length
val shape = Some(Array(1, numChoices, sequenceLength))
val (tokenTensors, maskTensors, segmentTensors) =
PrepareEmbeddings.prepareOvLongBatchTensorsWithSegment(
batch,
sequenceLength,
numChoices,
sentencePadTokenId,
shape)

val compiledModel = openvinoWrapper.get.getCompiledModel()
val inferRequest = compiledModel.create_infer_request()
inferRequest.set_tensor("input_ids", tokenTensors)
inferRequest.set_tensor("attention_mask", maskTensors)
inferRequest.set_tensor("token_type_ids", segmentTensors)

inferRequest.infer()

try {
try {
val logits = inferRequest
.get_output_tensor()
.data()

logits
}
} catch {
case e: Exception =>
// Log the exception as a warning
logger.warn("Exception in computeLogitsMultipleChoiceWithOv", e)
// Rethrow the exception to propagate it further
throw e
}
}

def findIndexedToken(
tokenizedSentences: Seq[TokenizedSentence],
sentence: (WordpieceTokenizedSentence, Int),
Expand Down
Loading
Loading