Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

SPARKNLP-962: UAEEmbeddings #14199

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/en/annotators.md
Original file line number Diff line number Diff line change
Expand Up @@ -161,6 +161,7 @@ Additionally, these transformers are available.
{% include templates/anno_table_entry.md path="./transformers" name="SwinForImageClassification" summary="SwinImageClassification is an image classifier based on Swin."%}
{% include templates/anno_table_entry.md path="./transformers" name="T5Transformer" summary="T5 reconsiders all NLP tasks into a unified text-to-text-format where the input and output are always text strings, in contrast to BERT-style models that can only output either a class label or a span of the input."%}
{% include templates/anno_table_entry.md path="./transformers" name="TapasForQuestionAnswering" summary="TapasForQuestionAnswering is an implementation of TaPas - a BERT-based model specifically designed for answering questions about tabular data."%}
{% include templates/anno_table_entry.md path="./transformers" name="UAEEmbeddings" summary="Sentence embeddings using Universal AnglE Embedding (UAE)."%}
{% include templates/anno_table_entry.md path="./transformers" name="UniversalSentenceEncoder" summary="The Universal Sentence Encoder encodes text into high dimensional vectors that can be used for text classification, semantic similarity, clustering and other natural language tasks."%}
{% include templates/anno_table_entry.md path="./transformers" name="VisionEncoderDecoderForImageCaptioning" summary="VisionEncoderDecoder model that converts images into text captions."%}
{% include templates/anno_table_entry.md path="./transformers" name="ViTForImageClassification" summary="Vision Transformer (ViT) for image classification."%}
Expand Down
157 changes: 157 additions & 0 deletions docs/en/transformer_entries/UAEEmbeddings.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
{%- capture title -%}
UAEEmbeddings
{%- endcapture -%}

{%- capture description -%}
Sentence embeddings using Universal AnglE Embedding (UAE).

UAE is a novel angle-optimized text embedding model, designed to improve semantic textual
similarity tasks, which are crucial for Large Language Model (LLM) applications. By
introducing angle optimization in a complex space, AnglE effectively mitigates saturation of
the cosine similarity function.

Pretrained models can be loaded with `pretrained` of the companion object:

```scala
val embeddings = UAEEmbeddings.pretrained()
.setInputCols("document")
.setOutputCol("UAE_embeddings")
```

The default model is `"uae_large_v1"`, if no name is provided.

For available pretrained models please see the
[Models Hub](https://sparknlp.org/models?q=UAE).

For extended examples of usage, see
[UAEEmbeddingsTestSpec](https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/embeddings/UAEEmbeddingsTestSpec.scala).

**Sources** :

[AnglE-optimized Text Embeddings](https://arxiv.org/abs/2309.12871)

[UAE Github Repository](https://github.com/baochi0212/uae-embedding)

**Paper abstract**

*High-quality text embedding is pivotal in improving semantic textual similarity (STS) tasks,
which are crucial components in Large Language Model (LLM) applications. However, a common
challenge existing text embedding models face is the problem of vanishing gradients, primarily
due to their reliance on the cosine function in the optimization objective, which has
saturation zones. To address this issue, this paper proposes a novel angle-optimized text
embedding model called AnglE. The core idea of AnglE is to introduce angle optimization in a
complex space. This novel approach effectively mitigates the adverse effects of the saturation
zone in the cosine function, which can impede gradient and hinder optimization processes. To
set up a comprehensive STS evaluation, we experimented on existing short-text STS datasets and
a newly collected long-text STS dataset from GitHub Issues. Furthermore, we examine
domain-specific STS scenarios with limited labeled data and explore how AnglE works with
LLM-annotated data. Extensive experiments were conducted on various tasks including short-text
STS, long-text STS, and domain-specific STS tasks. The results show that AnglE outperforms the
state-of-the-art (SOTA) STS models that ignore the cosine saturation zone. These findings
demonstrate the ability of AnglE to generate high-quality text embeddings and the usefulness
of angle optimization in STS.*
{%- endcapture -%}

{%- capture input_anno -%}
DOCUMENT
{%- endcapture -%}

{%- capture output_anno -%}
SENTENCE_EMBEDDINGS
{%- endcapture -%}

{%- capture python_example -%}
import sparknlp
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
embeddings = UAEEmbeddings.pretrained() \
.setInputCols(["document"]) \
.setOutputCol("embeddings")
embeddingsFinisher = EmbeddingsFinisher() \
.setInputCols("embeddings") \
.setOutputCols("finished_embeddings") \
.setOutputAsVector(True)
pipeline = Pipeline().setStages([
documentAssembler,
embeddings,
embeddingsFinisher
])

data = spark.createDataFrame([["hello world", "hello moon"]]).toDF("text")
result = pipeline.fit(data).transform(data)
result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
+--------------------------------------------------------------------------------+
| result|
+--------------------------------------------------------------------------------+
|[0.50387806, 0.5861606, 0.35129607, -0.76046336, -0.32446072, -0.117674336, 0...|
|[0.6660665, 0.961762, 0.24854276, -0.1018044, -0.6569202, 0.027635604, 0.1915...|
+--------------------------------------------------------------------------------+
{%- endcapture -%}

{%- capture scala_example -%}
import spark.implicits._
import com.johnsnowlabs.nlp.base.DocumentAssembler
import com.johnsnowlabs.nlp.annotators.Tokenizer
import com.johnsnowlabs.nlp.embeddings.UAEEmbeddings
import com.johnsnowlabs.nlp.EmbeddingsFinisher
import org.apache.spark.ml.Pipeline

val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val embeddings = UAEEmbeddings.pretrained()
.setInputCols("document")
.setOutputCol("UAE_embeddings")

val embeddingsFinisher = new EmbeddingsFinisher()
.setInputCols("UAE_embeddings")
.setOutputCols("finished_embeddings")
.setOutputAsVector(true)

val pipeline = new Pipeline().setStages(Array(
documentAssembler,
embeddings,
embeddingsFinisher
))

val data = Seq("hello world", "hello moon").toDF("text")
val result = pipeline.fit(data).transform(data)

result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
+--------------------------------------------------------------------------------+
| result|
+--------------------------------------------------------------------------------+
|[0.50387806, 0.5861606, 0.35129607, -0.76046336, -0.32446072, -0.117674336, 0...|
|[0.6660665, 0.961762, 0.24854276, -0.1018044, -0.6569202, 0.027635604, 0.1915...|
+--------------------------------------------------------------------------------+

{%- endcapture -%}

{%- capture api_link -%}
[UAEEmbeddings](/api/com/johnsnowlabs/nlp/embeddings/UAEEmbeddings)
{%- endcapture -%}

{%- capture python_api_link -%}
[UAEEmbeddings](/api/python/reference/autosummary/sparknlp/annotator/embeddings/uae_embeddings/index.html#sparknlp.annotator.embeddings.uae_embeddings.UAEEmbeddings)
{%- endcapture -%}

{%- capture source_link -%}
[UAEEmbeddings](https://github.com/JohnSnowLabs/spark-nlp/tree/master/src/main/scala/com/johnsnowlabs/nlp/embeddings/UAEEmbeddings.scala)
{%- endcapture -%}

{% include templates/anno_template.md
title=title
description=description
input_anno=input_anno
output_anno=output_anno
python_example=python_example
scala_example=scala_example
api_link=api_link
python_api_link=python_api_link
source_link=source_link
%}
Original file line number Diff line number Diff line change
Expand Up @@ -389,8 +389,7 @@
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
Expand Down
1 change: 1 addition & 0 deletions python/sparknlp/annotator/embeddings/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,3 +36,4 @@
from sparknlp.annotator.embeddings.xlm_roberta_sentence_embeddings import *
from sparknlp.annotator.embeddings.xlnet_embeddings import *
from sparknlp.annotator.embeddings.bge_embeddings import *
from sparknlp.annotator.embeddings.uae_embeddings import *
211 changes: 211 additions & 0 deletions python/sparknlp/annotator/embeddings/uae_embeddings.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,211 @@
# Copyright 2017-2022 John Snow Labs
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains classes for UAEEmbeddings."""

from sparknlp.common import *


class UAEEmbeddings(AnnotatorModel,
HasEmbeddingsProperties,
HasCaseSensitiveProperties,
HasStorageRef,
HasBatchedAnnotate,
HasMaxSentenceLengthLimit):
"""Sentence embeddings using Universal AnglE Embedding (UAE).

UAE is a novel angle-optimized text embedding model, designed to improve semantic textual
similarity tasks, which are crucial for Large Language Model (LLM) applications. By
introducing angle optimization in a complex space, AnglE effectively mitigates saturation of
the cosine similarity function.

Pretrained models can be loaded with :meth:`.pretrained` of the companion
object:

>>> embeddings = UAEEmbeddings.pretrained() \\
... .setInputCols(["document"]) \\
... .setOutputCol("UAE_embeddings")


The default model is ``"uae_large_v1"``, if no name is provided.

For available pretrained models please see the
`Models Hub <https://sparknlp.org/models?q=UAE>`__.


====================== ======================
Input Annotation types Output Annotation type
====================== ======================
``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
====================== ======================

Parameters
----------
batchSize
Size of every batch , by default 8
dimension
Number of embedding dimensions, by default 768
caseSensitive
Whether to ignore case in tokens for embeddings matching, by default False
maxSentenceLength
Max sentence length to process, by default 512
configProtoBytes
ConfigProto from tensorflow, serialized into byte array.

References
----------

`AnglE-optimized Text Embeddings <https://arxiv.org/abs/2309.12871>`__
`UAE Github Repository <https://github.com/baochi0212/uae-embedding>`__

**Paper abstract**

*High-quality text embedding is pivotal in improving semantic textual similarity (STS) tasks,
which are crucial components in Large Language Model (LLM) applications. However, a common
challenge existing text embedding models face is the problem of vanishing gradients, primarily
due to their reliance on the cosine function in the optimization objective, which has
saturation zones. To address this issue, this paper proposes a novel angle-optimized text
embedding model called AnglE. The core idea of AnglE is to introduce angle optimization in a
complex space. This novel approach effectively mitigates the adverse effects of the saturation
zone in the cosine function, which can impede gradient and hinder optimization processes. To
set up a comprehensive STS evaluation, we experimented on existing short-text STS datasets and
a newly collected long-text STS dataset from GitHub Issues. Furthermore, we examine
domain-specific STS scenarios with limited labeled data and explore how AnglE works with
LLM-annotated data. Extensive experiments were conducted on various tasks including short-text
STS, long-text STS, and domain-specific STS tasks. The results show that AnglE outperforms the
state-of-the-art (SOTA) STS models that ignore the cosine saturation zone. These findings
demonstrate the ability of AnglE to generate high-quality text embeddings and the usefulness
of angle optimization in STS.*

Examples
--------
>>> import sparknlp
>>> from sparknlp.base import *
>>> from sparknlp.annotator import *
>>> from pyspark.ml import Pipeline
>>> documentAssembler = DocumentAssembler() \\
... .setInputCol("text") \\
... .setOutputCol("document")
>>> embeddings = UAEEmbeddings.pretrained() \\
... .setInputCols(["document"]) \\
... .setOutputCol("embeddings")
>>> embeddingsFinisher = EmbeddingsFinisher() \\
... .setInputCols("embeddings") \\
... .setOutputCols("finished_embeddings") \\
... .setOutputAsVector(True)
>>> pipeline = Pipeline().setStages([
... documentAssembler,
... embeddings,
... embeddingsFinisher
... ])
>>> data = spark.createDataFrame([["hello world", "hello moon"]]).toDF("text")
>>> result = pipeline.fit(data).transform(data)
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
+--------------------------------------------------------------------------------+
| result|
+--------------------------------------------------------------------------------+
|[0.50387806, 0.5861606, 0.35129607, -0.76046336, -0.32446072, -0.117674336, 0...|
|[0.6660665, 0.961762, 0.24854276, -0.1018044, -0.6569202, 0.027635604, 0.1915...|
+--------------------------------------------------------------------------------+
"""

name = "UAEEmbeddings"

inputAnnotatorTypes = [AnnotatorType.DOCUMENT]

outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
poolingStrategy = Param(Params._dummy(),
"poolingStrategy",
"Pooling strategy to use for sentence embeddings",
TypeConverters.toString)

def setPoolingStrategy(self, value):
"""Pooling strategy to use for sentence embeddings.

Available pooling strategies for sentence embeddings are:
- `"cls"`: leading `[CLS]` token
- `"cls_avg"`: leading `[CLS]` token + mean of all other tokens
- `"last"`: embeddings of the last token in the sequence
- `"avg"`: mean of all tokens
- `"max"`: max of all embedding features of the entire token sequence
- `"int"`: An integer number, which represents the index of the token to use as the
embedding

Parameters
----------
value : str
Pooling strategy to use for sentence embeddings
"""

valid_strategies = {"cls", "cls_avg", "last", "avg", "max"}
if value in valid_strategies or value.isdigit():
return self._set(poolingStrategy=value)
else:
raise ValueError(f"Invalid pooling strategy: {value}. "
f"Valid strategies are: {', '.join(self.valid_strategies)} or an integer.")

@keyword_only
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.UAEEmbeddings", java_model=None):
super(UAEEmbeddings, self).__init__(
classname=classname,
java_model=java_model
)
self._setDefault(
dimension=1024,
batchSize=8,
maxSentenceLength=512,
caseSensitive=False,
poolingStrategy="cls"
)

@staticmethod
def loadSavedModel(folder, spark_session):
"""Loads a locally saved model.

Parameters
----------
folder : str
Folder of the saved model
spark_session : pyspark.sql.SparkSession
The current SparkSession

Returns
-------
UAEEmbeddings
The restored model
"""
from sparknlp.internal import _UAEEmbeddingsLoader
jModel = _UAEEmbeddingsLoader(folder, spark_session._jsparkSession)._java_obj
return UAEEmbeddings(java_model=jModel)

@staticmethod
def pretrained(name="uae_large_v1", lang="en", remote_loc=None):
"""Downloads and loads a pretrained model.

Parameters
----------
name : str, optional
Name of the pretrained model, by default "UAE_small"
lang : str, optional
Language of the pretrained model, by default "en"
remote_loc : str, optional
Optional remote address of the resource, by default None. Will use
Spark NLPs repositories otherwise.

Returns
-------
UAEEmbeddings
The restored model
"""
from sparknlp.pretrained import ResourceDownloader
return ResourceDownloader.downloadModel(UAEEmbeddings, name, lang, remote_loc)
Loading
Loading