Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

2024-02-01-bert_zero_shot_classifier_mnli_xx #14157

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
---
layout: model
title: BERT Zero-Shot Classification Base - MNLI (bert_zero_shot_classifier_mnli)
author: John Snow Labs
name: bert_zero_shot_classifier_mnli
date: 2024-02-01
tags: [xx, open_source, onnx]
task: Zero-Shot Classification
language: xx
edition: Spark NLP 5.2.4
spark_version: 3.4
supported: true
engine: onnx
annotator: BertForZeroShotClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

This model is intended to be used for zero-shot text classification. It is fine-tuned on MNLI.

BertForZeroShotClassification using a ModelForSequenceClassification trained on NLI (natural language inference) tasks. Equivalent of BertForSequenceClassification models, but these models don’t require a hardcoded number of potential classes, they can be chosen at runtime. It usually means it’s slower but it is much more flexible.

We used TFBertForSequenceClassification to train this model and used BertForZeroShotClassification annotator in Spark NLP 🚀 for prediction at scale!

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_zero_shot_classifier_mnli_xx_5.2.4_3.4_1706784558791.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_zero_shot_classifier_mnli_xx_5.2.4_3.4_1706784558791.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
document_assembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')

tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')

zeroShotClassifier = BertForZeroShotClassification \
.pretrained('bert_zero_shot_classifier_mnli', 'xx') \
.setInputCols(['token', 'document']) \
.setOutputCol('class') \
.setCaseSensitive(True) \
.setMaxSentenceLength(512) \
.setCandidateLabels(["urgent", "mobile", "travel", "movie", "music", "sport", "weather", "technology"])

pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
zeroShotClassifier
])

example = spark.createDataFrame([['I have a problem with my iphone that needs to be resolved asap!!']]).toDF("text")
result = pipeline.fit(example).transform(example)
```
```scala
val document_assembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val zeroShotClassifier = BertForSequenceClassification.pretrained("bert_zero_shot_classifier_mnli", "xx")
.setInputCols("document", "token")
.setOutputCol("class")
.setCaseSensitive(true)
.setMaxSentenceLength(512)
.setCandidateLabels(Array("urgent", "mobile", "travel", "movie", "music", "sport", "weather", "technology"))

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, zeroShotClassifier))

val example = Seq("I have a problem with my iphone that needs to be resolved asap!!").toDS.toDF("text")

val result = pipeline.fit(example).transform(example)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|bert_zero_shot_classifier_mnli|
|Compatibility:|Spark NLP 5.2.4+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[token, document]|
|Output Labels:|[label]|
|Language:|xx|
|Size:|409.1 MB|
|Case sensitive:|true|