Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[SPARKNLP-890] ONNX E5 MPnet example #13958

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,388 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![JohnSnowLabs](https://sparknlp.org/assets/images/logo.png)\n",
"\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/transformers/onnx/HuggingFace_ONNX_in_Spark_NLP_E5.ipynb)\n",
"\n",
"# Import ONNX E5 models from HuggingFace 🤗 into Spark NLP 🚀\n",
"\n",
"Let's keep in mind a few things before we start 😊\n",
"\n",
"- ONNX support for this annotator was introduced in `Spark NLP 5.1.0`, enabling high performance inference for models. Please make sure you have upgraded to the latest Spark NLP release.\n",
"- You can import models for E5 from HuggingFace and they have to be in `Sentence Similarity` category. Meaning, you cannot use E5 models trained/fine-tuned on a specific task such as token/sequence classification."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Export and Save HuggingFace model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- Let's install `transformers` package with the `onnx` extension and it's dependencies. You don't need `onnx` to be installed for Spark NLP, however, we need it to load and save models from HuggingFace.\n",
"- We lock `transformers` on version `4.29.1`. This doesn't mean it won't work with the future releases, but we wanted you to know which versions have been tested successfully."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.1/7.1 MB\u001b[0m \u001b[31m18.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m380.6/380.6 kB\u001b[0m \u001b[31m22.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m268.8/268.8 kB\u001b[0m \u001b[31m21.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m40.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.5/84.5 kB\u001b[0m \u001b[31m7.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m454.7/454.7 kB\u001b[0m \u001b[31m37.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.9/5.9 MB\u001b[0m \u001b[31m54.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.7/212.7 kB\u001b[0m \u001b[31m17.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m519.3/519.3 kB\u001b[0m \u001b[31m39.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.6/14.6 MB\u001b[0m \u001b[31m59.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m55.5/55.5 kB\u001b[0m \u001b[31m3.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m46.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m37.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m8.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.3/115.3 kB\u001b[0m \u001b[31m8.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m16.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m13.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"tensorflow 2.12.0 requires protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3, but you have protobuf 3.20.2 which is incompatible.\n",
"tensorflow-metadata 1.14.0 requires protobuf<4.21,>=3.20.3, but you have protobuf 3.20.2 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0m"
]
}
],
"source": [
"!pip install -q --upgrade transformers[onnx]==4.29.1 optimum"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- HuggingFace has an extension called Optimum which offers specialized model inference, including ONNX. We can use this to import and export ONNX models with `from_pretrained` and `save_pretrained`.\n",
"- We'll use [intfloat/e5-small-v2](https://huggingface.co/intfloat/e5-small-v2) model from HuggingFace as an example and load it as a `ORTModelForFeatureExtraction`, representing an ONNX model.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Framework not specified. Using pt to export to ONNX.\n",
"Using framework PyTorch: 2.0.1+cu118\n",
"Overriding 1 configuration item(s)\n",
"\t- use_cache -> False\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"============= Diagnostic Run torch.onnx.export version 2.0.1+cu118 =============\n",
"verbose: False, log level: Level.ERROR\n",
"======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ========================\n",
"\n"
]
}
],
"source": [
"from optimum.onnxruntime import ORTModelForFeatureExtraction\n",
"\n",
"MODEL_NAME = \"intfloat/e5-small-v2\"\n",
"EXPORT_PATH = f\"onnx_models/{MODEL_NAME}\"\n",
"\n",
"ort_model = ORTModelForFeatureExtraction.from_pretrained(MODEL_NAME, export=True)\n",
"\n",
"# Save the ONNX model\n",
"ort_model.save_pretrained(EXPORT_PATH)\n",
"\n",
"# Create directory for assets and move the tokenizer files.\n",
"# A separate folder is needed for Spark NLP.\n",
"!mkdir {EXPORT_PATH}/assets\n",
"!mv {EXPORT_PATH}/vocab.txt {EXPORT_PATH}/assets/"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's have a look inside these two directories and see what we are dealing with:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"total 130692\n",
"drwxr-xr-x 2 root root 4096 Sep 5 09:03 assets\n",
"-rw-r--r-- 1 root root 626 Sep 5 09:03 config.json\n",
"-rw-r--r-- 1 root root 133093467 Sep 5 09:03 model.onnx\n",
"-rw-r--r-- 1 root root 125 Sep 5 09:03 special_tokens_map.json\n",
"-rw-r--r-- 1 root root 314 Sep 5 09:03 tokenizer_config.json\n",
"-rw-r--r-- 1 root root 711396 Sep 5 09:03 tokenizer.json\n"
]
}
],
"source": [
"!ls -l {EXPORT_PATH}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"total 228\n",
"-rw-r--r-- 1 root root 231508 Sep 5 09:03 vocab.txt\n"
]
}
],
"source": [
"!ls -l {EXPORT_PATH}/assets"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import and Save E5 in Spark NLP\n",
"\n",
"- Let's install and setup Spark NLP in Google Colab\n",
"- This part is pretty easy via our simple script"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Installing PySpark 3.2.3 and Spark NLP 5.1.0\n",
"setup Colab for PySpark 3.2.3 and Spark NLP 5.1.0\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m281.5/281.5 MB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m531.2/531.2 kB\u001b[0m \u001b[31m39.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m199.7/199.7 kB\u001b[0m \u001b[31m19.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Building wheel for pyspark (setup.py) ... \u001b[?25l\u001b[?25hdone\n"
]
}
],
"source": [
"! wget -q http://setup.johnsnowlabs.com/colab.sh -O - | bash"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's start Spark with Spark NLP included via our simple `start()` function"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sparknlp\n",
"# let's start Spark with Spark NLP\n",
"spark = sparknlp.start()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- Let's use `loadSavedModel` functon in `E5Embeddings` which allows us to load the ONNX model\n",
"- Most params will be set automatically. They can also be set later after loading the model in `E5Embeddings` during runtime, so don't worry about setting them now\n",
"- `loadSavedModel` accepts two params, first is the path to the exported model. The second is the SparkSession that is `spark` variable we previously started via `sparknlp.start()`\n",
"- NOTE: `loadSavedModel` accepts local paths in addition to distributed file systems such as `HDFS`, `S3`, `DBFS`, etc. This feature was introduced in Spark NLP 4.2.2 release. Keep in mind the best and recommended way to move/share/reuse Spark NLP models is to use `write.save` so you can use `.load()` from any file systems natively.st and recommended way to move/share/reuse Spark NLP models is to use `write.save` so you can use `.load()` from any file systems natively.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sparknlp.annotator import *\n",
"\n",
"# All these params should be identical to the original ONNX model\n",
"E5 = E5Embeddings.loadSavedModel(f\"{EXPORT_PATH}\", spark)\\\n",
" .setInputCols([\"document\"])\\\n",
" .setOutputCol(\"E5\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- Let's save it on disk so it is easier to be moved around and also be used later via `.load` function"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"E5.write().overwrite().save(f\"{MODEL_NAME}_spark_nlp\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's clean up stuff we don't need anymore"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!rm -rf {EXPORT_PATH}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Awesome 😎 !\n",
"\n",
"This is your ONNX E5 model from HuggingFace 🤗 loaded and saved by Spark NLP 🚀"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"total 130008\n",
"-rw-r--r-- 1 root root 133113905 Sep 5 08:57 e5_onnx\n",
"drwxr-xr-x 3 root root 4096 Sep 5 08:57 fields\n",
"drwxr-xr-x 2 root root 4096 Sep 5 08:57 metadata\n"
]
}
],
"source": [
"! ls -l {MODEL_NAME}_spark_nlp"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's see how we can use it on other machines, clusters, or any place you wish to use your new and shiny E5 model 😊"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sparknlp\n",
"\n",
"from sparknlp.base import *\n",
"from sparknlp.annotator import *\n",
"\n",
"document_assembler = DocumentAssembler()\\\n",
" .setInputCol(\"text\")\\\n",
" .setOutputCol(\"document\")\n",
"\n",
"E5_loaded = E5Embeddings.load(f\"{MODEL_NAME}_spark_nlp\")\\\n",
" .setInputCols([\"document\"])\\\n",
" .setOutputCol(\"E5\")\\\n",
"\n",
"pipeline = Pipeline(\n",
" stages = [\n",
" document_assembler,\n",
" E5_loaded\n",
" ])\n",
"\n",
"data = spark.createDataFrame([['William Henry Gates III (born October 28, 1955) is an American business magnate, software developer, investor,and philanthropist.']]).toDF(\"text\")\n",
"model = pipeline.fit(data)\n",
"result = model.transform(data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"+--------------------+\n",
"| embeddings|\n",
"+--------------------+\n",
"|[-0.35357836, 0.3...|\n",
"+--------------------+\n",
"\n"
]
}
],
"source": [
"result.selectExpr(\"explode(E5.embeddings) as embeddings\").show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"That's it! You can now go wild and use hundreds of E5 models from HuggingFace 🤗 in Spark NLP 🚀\n"
]
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Loading