Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

2023-06-28-roberta_base_en #13871

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
25 commits
Select commit Hold shift + click to select a range
02cbb8b
Add model 2023-06-28-roberta_base_en
ahmedlone127 Jun 28, 2023
e1d60e9
Add model 2023-06-28-roberta_base_opt_en
ahmedlone127 Jun 28, 2023
1f78fb3
Add model 2023-06-28-roberta_base_quantized_en
ahmedlone127 Jun 28, 2023
ce6caa0
Add model 2023-06-28-small_bert_L2_768_en
ahmedlone127 Jun 28, 2023
e83b33c
Add model 2023-06-28-small_bert_L2_768_opt_en
ahmedlone127 Jun 28, 2023
e173d0f
Add model 2023-06-28-small_bert_L2_768_quantized_en
ahmedlone127 Jun 28, 2023
a38388f
Add model 2023-06-28-distilbert_base_cased_en
ahmedlone127 Jun 28, 2023
7de9ba4
Add model 2023-06-28-distilbert_base_cased_opt_en
ahmedlone127 Jun 28, 2023
efdd01c
Add model 2023-06-28-distilbert_base_cased_quantized_en
ahmedlone127 Jun 28, 2023
b286dac
Add model 2023-06-28-deberta_v3_base_en
ahmedlone127 Jun 28, 2023
41f2aed
Add model 2023-06-28-deberta_v3_base_opt_en
ahmedlone127 Jun 28, 2023
84da5a9
Add model 2023-06-28-deberta_v3_base_quantized_en
ahmedlone127 Jun 28, 2023
6b1dd8f
Add model 2023-06-28-distilbert_base_uncased_en
ahmedlone127 Jun 28, 2023
57faedb
Add model 2023-06-28-distilbert_base_uncased_opt_en
ahmedlone127 Jun 28, 2023
1c367fd
Add model 2023-06-28-distilbert_base_uncased_quantized_en
ahmedlone127 Jun 28, 2023
64f539d
Add model 2023-06-28-distilbert_base_multilingual_cased_xx
ahmedlone127 Jun 28, 2023
a2ea747
Add model 2023-06-28-distilbert_base_multilingual_cased_xx
ahmedlone127 Jun 28, 2023
585b84f
Add model 2023-06-28-distilbert_base_multilingual_cased_opt_xx
ahmedlone127 Jun 28, 2023
380f7e9
Add model 2023-06-28-distilbert_base_multilingual_cased_quantized_xx
ahmedlone127 Jun 28, 2023
80f3513
Add model 2023-06-28-distilbert_embeddings_distilbert_base_german_cas…
ahmedlone127 Jun 28, 2023
a929f12
Add model 2023-06-28-distilbert_embeddings_distilbert_base_german_cas…
ahmedlone127 Jun 28, 2023
81e3876
Add model 2023-06-28-distilbert_embeddings_distilbert_base_german_cas…
ahmedlone127 Jun 28, 2023
5883ef9
Add model 2023-06-29-bert_base_cased_en
ahmedlone127 Jun 29, 2023
9f18d60
Add model 2023-06-29-bert_base_cased_opt_en
ahmedlone127 Jun 29, 2023
f728870
Add model 2023-06-29-bert_base_cased_quantized_en
ahmedlone127 Jun 29, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
100 changes: 100 additions & 0 deletions docs/_posts/ahmedlone127/2023-06-28-deberta_v3_base_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
---
layout: model
title: DeBERTa base model
author: John Snow Labs
name: deberta_v3_base
date: 2023-06-28
tags: [en, english, open_source, embeddings, deberta, v3, base, onnx]
task: Embeddings
language: en
edition: Spark NLP 5.0.0
spark_version: 3.0
supported: true
engine: onnx
annotator: DeBertaEmbeddings
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

The DeBERTa model was proposed in [[https://arxiv.org/abs/2006.03654 DeBERTa: Decoding-enhanced BERT with Disentangled Attention]] by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google’s BERT model released in 2018 and Facebook’s RoBERTa model released in 2019. Compared to RoBERTa-Large, a DeBERTa model trained on half of the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9% (90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%).

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/deberta_v3_base_en_5.0.0_3.0_1687957496351.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/deberta_v3_base_en_5.0.0_3.0_1687957496351.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
embeddings = DeBertaEmbeddings.pretrained("deberta_v3_base", "en") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")
```
```scala
val embeddings = DeBertaEmbeddings.pretrained("deberta_v3_base", "en")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")
```


{:.nlu-block}
```python
import nlu
nlu.load("en.embed.deberta_v3_base").predict("""Put your text here.""")
```

</div>

{:.model-param}

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
embeddings = DeBertaEmbeddings.pretrained("deberta_v3_base", "en") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")
```
```scala
val embeddings = DeBertaEmbeddings.pretrained("deberta_v3_base", "en")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")
```

{:.nlu-block}
```python
import nlu
nlu.load("en.embed.deberta_v3_base").predict("""Put your text here.""")
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|deberta_v3_base|
|Compatibility:|Spark NLP 5.0.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[token, sentence]|
|Output Labels:|[embeddings]|
|Language:|en|
|Size:|435.2 MB|
|Case sensitive:|true|
|Max sentence length:|128|

## Benchmarking

```bash
Benchmarking
```
100 changes: 100 additions & 0 deletions docs/_posts/ahmedlone127/2023-06-28-deberta_v3_base_opt_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
---
layout: model
title: DeBERTa base model
author: John Snow Labs
name: deberta_v3_base_opt
date: 2023-06-28
tags: [en, english, open_source, embeddings, deberta, v3, base, onnx]
task: Embeddings
language: en
edition: Spark NLP 5.0.0
spark_version: 3.0
supported: true
engine: onnx
annotator: DeBertaEmbeddings
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

The DeBERTa model was proposed in [[https://arxiv.org/abs/2006.03654 DeBERTa: Decoding-enhanced BERT with Disentangled Attention]] by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google’s BERT model released in 2018 and Facebook’s RoBERTa model released in 2019. Compared to RoBERTa-Large, a DeBERTa model trained on half of the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9% (90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%).

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/deberta_v3_base_opt_en_5.0.0_3.0_1687958380723.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/deberta_v3_base_opt_en_5.0.0_3.0_1687958380723.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
embeddings = DeBertaEmbeddings.pretrained("deberta_v3_base", "en") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")
```
```scala
val embeddings = DeBertaEmbeddings.pretrained("deberta_v3_base", "en")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")
```


{:.nlu-block}
```python
import nlu
nlu.load("en.embed.deberta_v3_base").predict("""Put your text here.""")
```

</div>

{:.model-param}

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
embeddings = DeBertaEmbeddings.pretrained("deberta_v3_base", "en") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")
```
```scala
val embeddings = DeBertaEmbeddings.pretrained("deberta_v3_base", "en")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")
```

{:.nlu-block}
```python
import nlu
nlu.load("en.embed.deberta_v3_base").predict("""Put your text here.""")
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|deberta_v3_base_opt|
|Compatibility:|Spark NLP 5.0.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[token, sentence]|
|Output Labels:|[embeddings]|
|Language:|en|
|Size:|469.3 MB|
|Case sensitive:|true|
|Max sentence length:|128|

## Benchmarking

```bash
Benchmarking
```
100 changes: 100 additions & 0 deletions docs/_posts/ahmedlone127/2023-06-28-deberta_v3_base_quantized_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
---
layout: model
title: DeBERTa base model
author: John Snow Labs
name: deberta_v3_base_quantized
date: 2023-06-28
tags: [en, english, open_source, embeddings, deberta, v3, base, onnx]
task: Embeddings
language: en
edition: Spark NLP 5.0.0
spark_version: 3.0
supported: true
engine: onnx
annotator: DeBertaEmbeddings
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

The DeBERTa model was proposed in [[https://arxiv.org/abs/2006.03654 DeBERTa: Decoding-enhanced BERT with Disentangled Attention]] by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google’s BERT model released in 2018 and Facebook’s RoBERTa model released in 2019. Compared to RoBERTa-Large, a DeBERTa model trained on half of the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9% (90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%).

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/deberta_v3_base_quantized_en_5.0.0_3.0_1687958846162.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/deberta_v3_base_quantized_en_5.0.0_3.0_1687958846162.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
embeddings = DeBertaEmbeddings.pretrained("deberta_v3_base", "en") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")
```
```scala
val embeddings = DeBertaEmbeddings.pretrained("deberta_v3_base", "en")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")
```


{:.nlu-block}
```python
import nlu
nlu.load("en.embed.deberta_v3_base").predict("""Put your text here.""")
```

</div>

{:.model-param}

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
embeddings = DeBertaEmbeddings.pretrained("deberta_v3_base", "en") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")
```
```scala
val embeddings = DeBertaEmbeddings.pretrained("deberta_v3_base", "en")
.setInputCols("sentence", "token")
.setOutputCol("embeddings")
```

{:.nlu-block}
```python
import nlu
nlu.load("en.embed.deberta_v3_base").predict("""Put your text here.""")
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|deberta_v3_base_quantized|
|Compatibility:|Spark NLP 5.0.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[token, sentence]|
|Output Labels:|[embeddings]|
|Language:|en|
|Size:|310.7 MB|
|Case sensitive:|true|
|Max sentence length:|128|

## Benchmarking

```bash
Benchmarking
```
Loading