Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Models hub #13807

Merged
merged 14 commits into from
May 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
---
layout: model
title: RoBertaZero-Shot Classification Base roberta_base_zero_shot_classifier_nli
author: John Snow Labs
name: roberta_base_zero_shot_classifier_nli
date: 2023-05-04
tags: [en, open_source, tensorflow]
task: Zero-Shot Classification
language: en
edition: Spark NLP 4.4.2
spark_version: [3.0]
supported: true
engine: tensorflow
annotator: RoBertaForZeroShotClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

This model is intended to be used for zero-shot text classification, especially in English. It is fine-tuned on NLI by using Roberta Base model.

RoBertaForZeroShotClassificationusing a ModelForSequenceClassification trained on NLI (natural language inference) tasks. Equivalent of RoBertaForZeroShotClassification models, but these models don’t require a hardcoded number of potential classes, they can be chosen at runtime. It usually means it’s slower but it is much more flexible.

We used TFRobertaForSequenceClassification to train this model and used RoBertaForZeroShotClassification annotator in Spark NLP 🚀 for prediction at scale!

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/roberta_base_zero_shot_classifier_nli_en_4.4.2_3.0_1683228241365.zip){:.button.button-orange}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/roberta_base_zero_shot_classifier_nli_en_4.4.2_3.0_1683228241365.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
document_assembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')

tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')

zeroShotClassifier = RobertaForSequenceClassification \
.pretrained('roberta_base_zero_shot_classifier_nli', 'en') \
.setInputCols(['token', 'document']) \
.setOutputCol('class') \
.setCaseSensitive(True) \
.setMaxSentenceLength(512) \
.setCandidateLabels(["urgent", "mobile", "travel", "movie", "music", "sport", "weather", "technology"])

pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
zeroShotClassifier
])

example = spark.createDataFrame([['I have a problem with my iphone that needs to be resolved asap!!']]).toDF("text")
result = pipeline.fit(example).transform(example)
```
```scala
val document_assembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val zeroShotClassifier = RobertaForSequenceClassification.pretrained("roberta_base_zero_shot_classifier_nli", "en")
.setInputCols("document", "token")
.setOutputCol("class")
.setCaseSensitive(true)
.setMaxSentenceLength(512)
.setCandidateLabels(Array("urgent", "mobile", "travel", "movie", "music", "sport", "weather", "technology"))

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, zeroShotClassifier))
val example = Seq("I have a problem with my iphone that needs to be resolved asap!!").toDS.toDF("text")
val result = pipeline.fit(example).transform(example)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|roberta_base_zero_shot_classifier_nli|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[token, document]|
|Output Labels:|[multi_class]|
|Language:|en|
|Size:|466.4 MB|
|Case sensitive:|true|
119 changes: 119 additions & 0 deletions docs/_posts/ahmedlone127/2023-05-19-dependency_parse_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
---
layout: model
title: Typed Dependency Parsing pipeline for English
author: John Snow Labs
name: dependency_parse
date: 2023-05-19
tags: [pipeline, dependency_parsing, untyped_dependency_parsing, typed_dependency_parsing, laballed_depdency_parsing, unlaballed_depdency_parsing, en, open_source]
task: Dependency Parser
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
annotator: PipelineModel
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Typed Dependency parser, trained on the on the CONLL dataset.

Dependency parsing is the task of extracting a dependency parse of a sentence that represents its grammatical structure and defines the relationships between “head” words and words, which modify those heads.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dependency_parse_en_4.4.2_3.0_1684522392175.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dependency_parse_en_4.4.2_3.0_1684522392175.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline('dependency_parse', lang = 'en')
annotations = pipeline.fullAnnotate("Dependencies represents relationships betweens words in a Sentence "")[0]
annotations.keys()

```
```scala

val pipeline = new PretrainedPipeline("dependency_parse", lang = "en")
val result = pipeline.fullAnnotate("Dependencies represents relationships betweens words in a Sentence")(0)

```

{:.nlu-block}
```python

nlu.load("dep.typed").predict("Dependencies represents relationships betweens words in a Sentence")


```
</div>

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline('dependency_parse', lang = 'en')
annotations = pipeline.fullAnnotate("Dependencies represents relationships betweens words in a Sentence "")[0]
annotations.keys()
```
```scala
val pipeline = new PretrainedPipeline("dependency_parse", lang = "en")
val result = pipeline.fullAnnotate("Dependencies represents relationships betweens words in a Sentence")(0)
```

{:.nlu-block}
```python
nlu.load("dep.typed").predict("Dependencies represents relationships betweens words in a Sentence")
```
</div>

## Results

```bash
Results


+---------------------------------------------------------------------------------+--------------------------------------------------------+
|result |result |
+---------------------------------------------------------------------------------+--------------------------------------------------------+
|[ROOT, Dependencies, represents, words, relationships, Sentence, Sentence, words]|[root, parataxis, nsubj, amod, nsubj, case, nsubj, flat]|
+---------------------------------------------------------------------------------+--------------------------------------------------------+



{:.model-param}
```

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|dependency_parse|
|Type:|pipeline|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|23.8 MB|

## Included Models

- DocumentAssembler
- SentenceDetector
- TokenizerModel
- PerceptronModel
- DependencyParserModel
- TypedDependencyParserModel
77 changes: 77 additions & 0 deletions docs/_posts/ahmedlone127/2023-05-19-match_pattern_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
---
layout: model
title: Match Pattern
author: John Snow Labs
name: match_pattern
date: 2023-05-19
tags: [en, open_source]
task: Text Classification
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
annotator: PipelineModel
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

The match_pattern is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps and matches pattrens .
It performs most of the common text processing tasks on your dataframe

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/match_pattern_en_4.4.2_3.0_1684521353408.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/match_pattern_en_4.4.2_3.0_1684521353408.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("match_pattern", "en", "clinical/models")
result = pipeline.annotate("""I love johnsnowlabs! """)
```

</div>

{:.model-param}

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("match_pattern", "en", "clinical/models")
result = pipeline.annotate("""I love johnsnowlabs! """)
```

</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|match_pattern|
|Type:|pipeline|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|29.1 KB|

## Included Models

- DocumentAssembler
- SentenceDetector
- TokenizerModel
- RegexMatcherModel
Loading