Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

2023-05-19-match_pattern_en #13805

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
123 commits
Select commit Hold shift + click to select a range
c9e4b7c
Add model 2023-05-19-match_pattern_en
ahmedlone127 May 19, 2023
b5e29be
Add model 2023-05-19-dependency_parse_en
ahmedlone127 May 19, 2023
d96e3ca
Add model 2023-05-20-explain_document_md_fr
ahmedlone127 May 20, 2023
c68a380
Add model 2023-05-20-dependency_parse_en
ahmedlone127 May 20, 2023
fb35192
Add model 2023-05-20-explain_document_md_it
ahmedlone127 May 20, 2023
39f8bde
Add model 2023-05-20-entity_recognizer_lg_fr
ahmedlone127 May 20, 2023
69755e3
Add model 2023-05-20-entity_recognizer_md_fr
ahmedlone127 May 20, 2023
ef4465d
Add model 2023-05-20-entity_recognizer_lg_it
ahmedlone127 May 20, 2023
f0d9eb1
Add model 2023-05-20-entity_recognizer_md_it
ahmedlone127 May 20, 2023
3b3f15a
Add model 2023-05-20-check_spelling_en
ahmedlone127 May 20, 2023
ecf84d1
Add model 2023-05-20-match_datetime_en
ahmedlone127 May 20, 2023
bb4e25b
Add model 2023-05-20-match_pattern_en
ahmedlone127 May 20, 2023
2e7df5d
Add model 2023-05-20-clean_pattern_en
ahmedlone127 May 20, 2023
b793913
Add model 2023-05-20-clean_stop_en
ahmedlone127 May 20, 2023
c0b9e20
Add model 2023-05-20-movies_sentiment_analysis_en
ahmedlone127 May 20, 2023
4e8e5e3
Add model 2023-05-20-explain_document_ml_en
ahmedlone127 May 20, 2023
e850810
Add model 2023-05-20-analyze_sentiment_en
ahmedlone127 May 20, 2023
9600848
Add model 2023-05-20-explain_document_dl_en
ahmedlone127 May 20, 2023
13ee42b
Add model 2023-05-20-recognize_entities_dl_en
ahmedlone127 May 20, 2023
1347221
Add model 2023-05-20-recognize_entities_bert_en
ahmedlone127 May 20, 2023
c34cbc1
Add model 2023-05-20-explain_document_md_de
ahmedlone127 May 20, 2023
dc9cbfc
Add model 2023-05-21-entity_recognizer_lg_de
ahmedlone127 May 21, 2023
2cabfc0
Add model 2023-05-21-entity_recognizer_md_de
ahmedlone127 May 21, 2023
72988ed
Add model 2023-05-21-onto_recognize_entities_sm_en
ahmedlone127 May 21, 2023
f3c0698
Add model 2023-05-21-onto_recognize_entities_lg_en
ahmedlone127 May 21, 2023
74d7386
Add model 2023-05-21-match_chunks_en
ahmedlone127 May 21, 2023
ac8e010
Add model 2023-05-21-explain_document_lg_es
ahmedlone127 May 21, 2023
1018b89
Add model 2023-05-21-explain_document_md_es
ahmedlone127 May 21, 2023
1a25224
Add model 2023-05-21-explain_document_sm_es
ahmedlone127 May 21, 2023
9a2085b
Add model 2023-05-21-entity_recognizer_lg_es
ahmedlone127 May 21, 2023
77e0ff9
Add model 2023-05-21-entity_recognizer_md_es
ahmedlone127 May 21, 2023
8de2c30
Add model 2023-05-21-entity_recognizer_sm_es
ahmedlone127 May 21, 2023
7cf996c
Add model 2023-05-21-explain_document_lg_ru
ahmedlone127 May 21, 2023
069cd41
Add model 2023-05-21-explain_document_md_ru
ahmedlone127 May 21, 2023
be101d9
Add model 2023-05-21-explain_document_sm_ru
ahmedlone127 May 21, 2023
3f0c02a
Add model 2023-05-21-entity_recognizer_lg_ru
ahmedlone127 May 21, 2023
1845545
Add model 2023-05-21-entity_recognizer_md_ru
ahmedlone127 May 21, 2023
cc08a7e
Add model 2023-05-21-entity_recognizer_sm_ru
ahmedlone127 May 21, 2023
0aa3581
Add model 2023-05-21-text_cleaning_en
ahmedlone127 May 21, 2023
5c11ad3
Add model 2023-05-21-explain_document_lg_pt
ahmedlone127 May 21, 2023
982dfbc
Add model 2023-05-21-explain_document_md_pt
ahmedlone127 May 21, 2023
c47cf5b
Add model 2023-05-21-explain_document_sm_pt
ahmedlone127 May 21, 2023
31655c8
Add model 2023-05-21-entity_recognizer_lg_pt
ahmedlone127 May 21, 2023
bda1961
Add model 2023-05-21-entity_recognizer_md_pt
ahmedlone127 May 21, 2023
f4352df
Add model 2023-05-21-entity_recognizer_sm_pt
ahmedlone127 May 21, 2023
437027d
Add model 2023-05-21-explain_document_lg_pl
ahmedlone127 May 21, 2023
7bf5170
Add model 2023-05-21-explain_document_md_pl
ahmedlone127 May 21, 2023
8e426d8
Add model 2023-05-21-explain_document_sm_pl
ahmedlone127 May 21, 2023
cda7470
Add model 2023-05-21-entity_recognizer_lg_pl
ahmedlone127 May 21, 2023
3951cb5
Add model 2023-05-21-entity_recognizer_md_pl
ahmedlone127 May 21, 2023
7680116
Add model 2023-05-21-entity_recognizer_sm_pl
ahmedlone127 May 21, 2023
b52fb41
Add model 2023-05-21-explain_document_lg_nl
ahmedlone127 May 21, 2023
e9d929f
Add model 2023-05-21-explain_document_md_nl
ahmedlone127 May 21, 2023
845eaa1
Add model 2023-05-21-explain_document_sm_nl
ahmedlone127 May 21, 2023
6539252
Add model 2023-05-21-entity_recognizer_lg_nl
ahmedlone127 May 21, 2023
3c2c195
Add model 2023-05-21-entity_recognizer_md_nl
ahmedlone127 May 21, 2023
1f9b2f3
Add model 2023-05-21-entity_recognizer_sm_nl
ahmedlone127 May 21, 2023
43c0950
Add model 2023-05-21-analyze_sentimentdl_glove_imdb_en
ahmedlone127 May 21, 2023
b4a9671
Add model 2023-05-21-explain_document_lg_no
ahmedlone127 May 21, 2023
be53976
Add model 2023-05-21-explain_document_md_no
ahmedlone127 May 21, 2023
8165a33
Add model 2023-05-21-explain_document_sm_no
ahmedlone127 May 21, 2023
b650449
Add model 2023-05-21-entity_recognizer_lg_no
ahmedlone127 May 21, 2023
66a3f95
Add model 2023-05-21-entity_recognizer_md_no
ahmedlone127 May 21, 2023
f270b5b
Add model 2023-05-21-entity_recognizer_sm_no
ahmedlone127 May 21, 2023
a2a340d
Add model 2023-05-21-explain_document_lg_sv
ahmedlone127 May 21, 2023
cfc1055
Add model 2023-05-21-explain_document_md_sv
ahmedlone127 May 21, 2023
7e354f9
Add model 2023-05-21-explain_document_sm_sv
ahmedlone127 May 21, 2023
4b8fb27
Add model 2023-05-21-entity_recognizer_lg_sv
ahmedlone127 May 21, 2023
66962ad
Add model 2023-05-21-entity_recognizer_md_sv
ahmedlone127 May 21, 2023
7e828aa
Add model 2023-05-21-entity_recognizer_sm_sv
ahmedlone127 May 21, 2023
76feb99
Add model 2023-05-21-explain_document_lg_da
ahmedlone127 May 21, 2023
a498b45
Add model 2023-05-21-explain_document_md_da
ahmedlone127 May 21, 2023
4e727c4
Add model 2023-05-21-explain_document_sm_da
ahmedlone127 May 21, 2023
f325fea
Add model 2023-05-21-entity_recognizer_lg_da
ahmedlone127 May 21, 2023
bbab1ff
Add model 2023-05-21-entity_recognizer_md_da
ahmedlone127 May 21, 2023
5650e2c
Add model 2023-05-21-entity_recognizer_sm_da
ahmedlone127 May 21, 2023
5afc94a
Add model 2023-05-21-explain_document_lg_fi
ahmedlone127 May 21, 2023
86e49f5
Add model 2023-05-21-explain_document_md_fi
ahmedlone127 May 21, 2023
4c7cde1
Add model 2023-05-21-explain_document_sm_fi
ahmedlone127 May 21, 2023
4bf2a72
Add model 2023-05-21-entity_recognizer_lg_fi
ahmedlone127 May 21, 2023
729d4d6
Add model 2023-05-21-entity_recognizer_md_fi
ahmedlone127 May 21, 2023
fa79d56
Add model 2023-05-21-entity_recognizer_sm_fi
ahmedlone127 May 21, 2023
a62e906
Add model 2023-05-21-onto_recognize_entities_bert_base_en
ahmedlone127 May 21, 2023
916a8f6
Add model 2023-05-21-onto_recognize_entities_bert_large_en
ahmedlone127 May 21, 2023
aa373a7
Add model 2023-05-21-onto_recognize_entities_bert_medium_en
ahmedlone127 May 21, 2023
68b24b3
Add model 2023-05-21-onto_recognize_entities_bert_mini_en
ahmedlone127 May 21, 2023
38e24b9
Add model 2023-05-21-onto_recognize_entities_bert_small_en
ahmedlone127 May 21, 2023
405d307
Add model 2023-05-21-onto_recognize_entities_bert_tiny_en
ahmedlone127 May 21, 2023
f651718
Add model 2023-05-21-onto_recognize_entities_electra_base_en
ahmedlone127 May 21, 2023
d562db0
Add model 2023-05-21-onto_recognize_entities_electra_small_en
ahmedlone127 May 21, 2023
4ebd1eb
Add model 2023-05-21-onto_recognize_entities_electra_large_en
ahmedlone127 May 21, 2023
9413fa0
Add model 2023-05-21-recognize_entities_dl_fa
ahmedlone127 May 21, 2023
306f484
Add model 2023-05-21-nerdl_fewnerd_subentity_100d_pipeline_en
ahmedlone127 May 21, 2023
9ea3b46
Add model 2023-05-21-nerdl_fewnerd_100d_pipeline_en
ahmedlone127 May 21, 2023
64e433e
Add model 2023-05-21-pos_ud_bokmaal_nb
ahmedlone127 May 21, 2023
b20f936
Add model 2023-05-21-xlm_roberta_large_token_classifier_masakhaner_pi…
ahmedlone127 May 21, 2023
0f71426
Add model 2023-05-21-bert_token_classifier_scandi_ner_pipeline_xx
ahmedlone127 May 21, 2023
628f4f0
Add model 2023-05-21-bert_sequence_classifier_trec_coarse_pipeline_en
ahmedlone127 May 21, 2023
7399e0d
Add model 2023-05-21-bert_sequence_classifier_age_news_pipeline_en
ahmedlone127 May 21, 2023
7e9b2a4
Add model 2023-05-21-distilbert_token_classifier_typo_detector_pipeli…
ahmedlone127 May 21, 2023
ffbd834
Add model 2023-05-21-distilbert_base_token_classifier_masakhaner_pipe…
ahmedlone127 May 21, 2023
9793d80
Add model 2023-05-21-nerdl_restaurant_100d_pipeline_en
ahmedlone127 May 21, 2023
e649f46
Add model 2023-05-21-roberta_token_classifier_timex_semeval_pipeline_en
ahmedlone127 May 21, 2023
5b4839f
Add model 2023-05-21-bert_token_classifier_hi_en_ner_pipeline_hi
ahmedlone127 May 21, 2023
f945def
Add model 2023-05-21-xlm_roberta_large_token_classifier_hrl_pipeline_xx
ahmedlone127 May 21, 2023
307402a
Add model 2023-05-21-spellcheck_dl_pipeline_en
ahmedlone127 May 21, 2023
bf55c25
Add model 2023-05-21-bert_token_classifier_dutch_udlassy_ner_pipeline_nl
ahmedlone127 May 21, 2023
861c144
Add model 2023-05-21-xlm_roberta_large_token_classifier_conll03_pipel…
ahmedlone127 May 21, 2023
ec2f062
Add model 2023-05-21-roberta_token_classifier_bne_capitel_ner_pipelin…
ahmedlone127 May 21, 2023
17f3869
Add model 2023-05-21-roberta_token_classifier_icelandic_ner_pipeline_is
ahmedlone127 May 21, 2023
3b24ff8
Add model 2023-05-21-longformer_base_token_classifier_conll03_pipelin…
ahmedlone127 May 21, 2023
cb64ffe
Add model 2023-05-21-longformer_large_token_classifier_conll03_pipeli…
ahmedlone127 May 21, 2023
0495d29
Add model 2023-05-21-xlnet_base_token_classifier_conll03_pipeline_en
ahmedlone127 May 21, 2023
388261d
Add model 2023-05-21-xlm_roberta_base_token_classifier_ontonotes_pipe…
ahmedlone127 May 21, 2023
3c5a28f
Add model 2023-05-21-xlm_roberta_base_token_classifier_conll03_pipeli…
ahmedlone127 May 21, 2023
2fded4e
Add model 2023-05-21-xlnet_large_token_classifier_conll03_pipeline_en
ahmedlone127 May 21, 2023
7b01d53
Add model 2023-05-21-albert_base_token_classifier_conll03_pipeline_en
ahmedlone127 May 21, 2023
3167f9f
Add model 2023-05-21-albert_large_token_classifier_conll03_pipeline_en
ahmedlone127 May 21, 2023
9b1cbd0
Add model 2023-05-21-albert_xlarge_token_classifier_conll03_pipeline_en
ahmedlone127 May 21, 2023
f3b78a8
Add model 2023-05-21-distilroberta_base_token_classifier_ontonotes_pi…
ahmedlone127 May 21, 2023
a1f3c0b
Add model 2023-05-21-roberta_base_token_classifier_ontonotes_pipeline_en
ahmedlone127 May 21, 2023
1c6eaf8
Add model 2023-05-21-roberta_large_token_classifier_conll03_pipeline_en
ahmedlone127 May 21, 2023
157aefa
Add model 2023-05-21-distilbert_token_classifier_typo_detector_pipeli…
ahmedlone127 May 21, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
119 changes: 119 additions & 0 deletions docs/_posts/ahmedlone127/2023-05-19-dependency_parse_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
---
layout: model
title: Typed Dependency Parsing pipeline for English
author: John Snow Labs
name: dependency_parse
date: 2023-05-19
tags: [pipeline, dependency_parsing, untyped_dependency_parsing, typed_dependency_parsing, laballed_depdency_parsing, unlaballed_depdency_parsing, en, open_source]
task: Dependency Parser
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
annotator: PipelineModel
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Typed Dependency parser, trained on the on the CONLL dataset.

Dependency parsing is the task of extracting a dependency parse of a sentence that represents its grammatical structure and defines the relationships between “head” words and words, which modify those heads.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/dependency_parse_en_4.4.2_3.0_1684522392175.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/dependency_parse_en_4.4.2_3.0_1684522392175.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline('dependency_parse', lang = 'en')
annotations = pipeline.fullAnnotate("Dependencies represents relationships betweens words in a Sentence "")[0]
annotations.keys()

```
```scala

val pipeline = new PretrainedPipeline("dependency_parse", lang = "en")
val result = pipeline.fullAnnotate("Dependencies represents relationships betweens words in a Sentence")(0)

```

{:.nlu-block}
```python

nlu.load("dep.typed").predict("Dependencies represents relationships betweens words in a Sentence")


```
</div>

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline('dependency_parse', lang = 'en')
annotations = pipeline.fullAnnotate("Dependencies represents relationships betweens words in a Sentence "")[0]
annotations.keys()
```
```scala
val pipeline = new PretrainedPipeline("dependency_parse", lang = "en")
val result = pipeline.fullAnnotate("Dependencies represents relationships betweens words in a Sentence")(0)
```

{:.nlu-block}
```python
nlu.load("dep.typed").predict("Dependencies represents relationships betweens words in a Sentence")
```
</div>

## Results

```bash
Results


+---------------------------------------------------------------------------------+--------------------------------------------------------+
|result |result |
+---------------------------------------------------------------------------------+--------------------------------------------------------+
|[ROOT, Dependencies, represents, words, relationships, Sentence, Sentence, words]|[root, parataxis, nsubj, amod, nsubj, case, nsubj, flat]|
+---------------------------------------------------------------------------------+--------------------------------------------------------+



{:.model-param}
```

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|dependency_parse|
|Type:|pipeline|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|23.8 MB|

## Included Models

- DocumentAssembler
- SentenceDetector
- TokenizerModel
- PerceptronModel
- DependencyParserModel
- TypedDependencyParserModel
77 changes: 77 additions & 0 deletions docs/_posts/ahmedlone127/2023-05-19-match_pattern_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
---
layout: model
title: Match Pattern
author: John Snow Labs
name: match_pattern
date: 2023-05-19
tags: [en, open_source]
task: Text Classification
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
annotator: PipelineModel
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

The match_pattern is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps and matches pattrens .
It performs most of the common text processing tasks on your dataframe

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/match_pattern_en_4.4.2_3.0_1684521353408.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/match_pattern_en_4.4.2_3.0_1684521353408.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("match_pattern", "en", "clinical/models")
result = pipeline.annotate("""I love johnsnowlabs! """)
```

</div>

{:.model-param}

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("match_pattern", "en", "clinical/models")
result = pipeline.annotate("""I love johnsnowlabs! """)
```

</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|match_pattern|
|Type:|pipeline|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|29.1 KB|

## Included Models

- DocumentAssembler
- SentenceDetector
- TokenizerModel
- RegexMatcherModel
130 changes: 130 additions & 0 deletions docs/_posts/ahmedlone127/2023-05-20-analyze_sentiment_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
---
layout: model
title: Sentiment Analysis pipeline for English
author: John Snow Labs
name: analyze_sentiment
date: 2023-05-20
tags: [open_source, english, analyze_sentiment, pipeline, en]
task: Named Entity Recognition
language: en
edition: Spark NLP 4.4.2
spark_version: 3.0
supported: true
annotator: PipelineModel
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

The analyze_sentiment is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps
and recognizes entities .
It performs most of the common text processing tasks on your dataframe

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/analyze_sentiment_en_4.4.2_3.0_1684625826708.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/analyze_sentiment_en_4.4.2_3.0_1684625826708.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}

```python

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline('analyze_sentiment', lang = 'en')

result = pipeline.fullAnnotate("""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!""")


```
```scala

import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("analyze_sentiment", lang = "en")

val result = pipeline.fullAnnotate("""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!""")

```

{:.nlu-block}
```python

import nlu
text = ["""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!"""]
result_df = nlu.load('en.classify').predict(text)
result_df

```
</div>

<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline('analyze_sentiment', lang = 'en')

result = pipeline.fullAnnotate("""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!""")
```
```scala
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("analyze_sentiment", lang = "en")

val result = pipeline.fullAnnotate("""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!""")
```

{:.nlu-block}
```python
import nlu
text = ["""Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now!"""]
result_df = nlu.load('en.classify').predict(text)
result_df
```
</div>

## Results

```bash
Results


| | text | sentiment |
|---:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------|
| 0 | Demonicus is a movie turned into a video game! I just love the story and the things that goes on in the film.It is a B-film ofcourse but that doesn`t bother one bit because its made just right and the music was rad! Horror and sword fight freaks,buy this movie now! | positive |


{:.model-param}
```

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|analyze_sentiment|
|Type:|pipeline|
|Compatibility:|Spark NLP 4.4.2+|
|License:|Open Source|
|Edition:|Official|
|Language:|en|
|Size:|5.1 MB|

## Included Models

- DocumentAssembler
- SentenceDetector
- TokenizerModel
- NorvigSweetingModel
- ViveknSentimentModel
Loading